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ABSTRACT

Disparity estimation algorithms mostly lack information

about the reliability of the disparities. Therefore, errors in

initial disparity maps are propagated in consecutive process-

ing steps. This is in particularly problematic for difficult

scene elements, e.g., periodic structures. Consequently, we

introduce a simple, yet novel confidence measure that filters

out wrongly computed disparities, resulting in improved final

disparity maps. To demonstrate the benefit of this approach,

we compare our method with existing state-of-the-art con-

fidence measures and show that we improve the ability to

detect false disparities by 54.2%.

Index Terms— Stereo Vision, 3D reconstruction, dispa-

rity estimation, confidence measure, CNN.

1. INTRODUCTION

Stereo disparity estimation is one of the most researched and

active fields within computer vision. This is mainly because

estimated disparities using existing algorithms are not accu-

rate enough and the computational costs are often too high

[1, 2, 3]. In recent years, deep-learning methods increased

the accuracy of such algorithms [4, 5]. Overall, more accu-

rate disparity maps can improve the results for depth-image-

based-rendering methods. Initial disparity maps are mostly

computed from two stereo images, and later combined with

disparity maps computed from other camera pairs. Fusion

of multiple disparity seems to be straightforward, however,

due to false disparities, it is not. False disparities are being

propagated and thus result in unreliable disparity maps. We

propose a new confidence measure to filter out these initially

false disparities.

In this paper, we introduce a novel confidence measure

based on conventional approaches [6, 7, 8, 9, 10, 11, 12], in

which confidences are assigned by examining the cost curves.

When we assume that truly corresponding pixels have the

minimal matching cost, the ideal cost curve as a function of
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(a) Estimated disparities (b) Our confidences

Fig. 1. (a) Estimated disparities MC-CNN + box-filter

(brighter is closer) for Teddy (Fig. 2 (a)) image from MB03

and (b) the confidences from our proposed confidence mea-

sure (brighter is higher, scaled for better visualization).

disparity for a pixel, has a single, distinct minimum. How-

ever, most cost curves are ambiguous because they have

multiple minima or multiple adjacent disparities with similar

costs, making localization of the exact disparity hard. The

shape of the cost curve heavily depends on the stereo algo-

rithm used. Some algorithms tend to be more sensitive to

noise and produce cost curves without an easy to distinguish

global minimum. We examine our proposed method and

compare it to two state-of-the-art methods according to their

ability to rank potential matches. As Spyropoulos and Mor-

dohai already envisioned in their paper [13], we use the stereo

method developed by Žbontar and Le Cun [4] to compute the

matching costs. They trained a convolutional neural network

(CNN) to predict whether two image patches match or not.

The remainder of this paper is structured as follows. In

Section 2, we list related work, while in Section 3, our pro-

posed method is introduced. An in-depth discussion about the

experimental results is provided in Section 4, followed by the

conclusion and future work in Section 5.

2. RELATED WORK

In recent years, many confidence measures aiming at detect-

ing unreliable disparity assignments, proved to be very ef-

fective cues when combined with state-of-the-art stereo algo-

rithms [5, 14, 15, 16]. The ability to reliably detect failures

of a stereo algorithm by means of a confidence measure is
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fundamental and many approaches have been proposed for

this purpose. Hu and Mordohai [17] were the first ones to

exhaustively review and compare confidence measures avail-

able at that time and defined an effective metric to evaluate

the performance of the different measures. New confidence

measures have been introduced and evaluated, most measures

are based on deep learning [5, 18] and other machine learn-

ing methods [13, 14, 15, 16, 19]. The latest thorough eval-

uation of 76 state-of-the-art confidence measures has been

performed by Poggi et al. [20] in 2017. In this, a similar

trend as in the evaluation of stereo algorithms can be seen,

machine learning based approaches clearly outperform con-

ventional approaches.

Based on previous evaluations, we selected the state-of-

the-art confidence measures Left-Right Difference (LRD)

[17] and Confidence CNN (CCNN) [18], and compare their

performance to the performance of our proposed method.

Following [17], to better clarify which cues are processed by

each single measure we use the following notation.

Given a stereo pair of rectified left (L) and right (R) im-

ages, we compute the cost volumes c{R,L}(x, y, d) that con-

tain cost values for each possible match within the defined

disparity range from a pixel in the left image IL(xL, y) to a

pixel in the right image IR(xR, y), and vice versa. Disparity

is defined conventionally as d = xL − xR. The minimum

and maximum disparity values, dmin and dmax, are provided

by the dataset (Section 4.1). Thus, the cost curve of a pixel

is the set of cost values for all allowable disparities for the

pixel. c{R,L}1(x, y) and c{R,L}2(x, y) indicate the minimum

and second minimum values of the cost curve, respectively,

c{R,L}2(x, y) does not have to be a local minimum. The dis-

parity value d(c{R,L}1(x, y)) is denoted by d{R,L}1(x, y).
We will now describe the two state-of-the-art methods in

more details. The LRD confidence measure CLRD(xL, y) fa-

vors a large margin between the two smallest minima of the

cost for pixel (xL, y) in the left image. Also consistency of

the minimum costs between the left-to-right and right-to-left

disparity maps:

CLRD(xL, y) =
cL2(xL, y)− cL1(xL, y)

|cL1(xL, y)− cR1(xR, y)|+ ε
, (1)

with xR = xL −d(xL, y) and ε a very small value to avoid

zero-devision.

The intuition is that truly corresponding pixels should re-

sult in similar cost values and thus a small denominator. This

formulation provides safeguards against two failure modes. If

the margin cL2(xL, y)− cL1(xL, y) is large, but the pixel has

been mismatched the denominator will be large. If the margin

is small, the match is likely to be ambiguous. In this case, a

small denominator indicates that a correspondence between

two similar pixels has been established. According to [17],

LRD is one of the best overall confidence measures for stereo

inputs.

As a second confidence measure, we use CCNN. In this

approach, confidence prediction is regressed by a CNN with-

out extracting any cue from the stereo input images. The deep

network, trained on patches, learns from scratch a confidence

measure by processing only the left disparity map, normalized

with respect to the maximum disparity, to values between zero

and one. For the evaluation we used the source code provided

by the authors (using 8 bit confidence maps). This confidence

measure has been identified by Poggi et al. [20] as the best

performing one. However, training of such a neural network

is an additional issue.

We evaluate these confidence measures using the stereo

method Matching Cost Convolutional Neural Network (MC-
CNN) developed by Žbontar and Le Cun [4]. An eight-layer

network is trained on pairs of patches to compute a measure

of similarity between them. These outputs represent match-

ing scores for every possible disparity of each pixel. The

scores are adaptively aggregated [21] and optimized using

semi-global matching (SGM) to obtain the highly ranked re-

sults on the KITTI benchmark [22]. Žbontar and Le Cun

proposed an accurate architecture and a faster/simplified one,

skipping cross-based aggregation. The latter showed a re-

markable speed-up with respect to the accurate CNN archi-

tecture (0.8 sec vs 67 sec) with an increase of the error rate

smaller than 1% on both KITTI datasets. We compute our

cost volumes using the code provided by the authors, using

their fast architecture. We use the network that is pre-trained

on the KITTI 2012 dataset [22], which is different from our

test set, to avoid a biased evaluation.

3. PROPOSED METHOD

Our proposed method computes a confidence solely based on

the cost curve for each pixel in the disparity map. The confi-

dence value for each pixel indicates how likely the assigned

disparity is correct. Our confidence measure is defined as

C(x, y) =
1

dmax∑
d=dmin

max(min(Δd(x,y,d)−1,
dmax−dmin

3 ),0)
2

max(Δc(x,y,d)− cmean(x,y)
3 ,1)

, (2)

with Δd(x, y, d) = |d − d1(x, y)| and Δc(x, y, d) =
c(x, y, d)− c1(x, y).

Multiple local minima, corresponding to multiple small

values of Δc(x, y, d), in the cost curve indicate uncertainty

about the disparity value of the pixel, therefore, the confi-

dence should be low. Empirical tests indicated the importance

of the distance between multiple minima. A higher distance,

i.e. larger Δd(x, y, d), indicates a higher uncertainty for the

disparity value. We subtract 1 from Δd(x, y, d), to not pe-

nalize two minima next to each other, as this is most likely a

quantization error and will be fixed in post-processing steps.

To avoid negative penalties, the maximum with 0 is taken. If

there are multiple local minima more than 1 pixel apart, the

confidence decreases. The decrease in confidence is clipped

at dmax−dmin

3 . A large margin between the global minimum and

all other costs is favored, as then it’s most likely to be the cor-



rect disparity. This margin is empirically defined as
cmean(x,y)

3 ,

where cmean(x, y) is the average of the costs within the defined

disparity range. Costs within this margin will have a negative

influence on the confidence value, whereas costs outside this

margin, even when belonging to a local minimum, do not have

any influence. To incorporate the influences of all costs, we

sum over the complete disparity range dmin to dmax.

4. EVALUATION AND RESULTS

We evaluate the two state-of-the-art methods LRD and

CCNN and compare the performance to our proposed method,

using MC-CNN as basis. We maintain the same evaluation

procedure as first described in [17]. For our evaluation, we

use the following dataset.

4.1. Dataset

Table 1. Details of Middlebury datasets used.
MB03Q MB05T MB06T MB14Q

# pairs 2 6 21 15

Resolution Quarter Third Third Quarter

dmax 59px 80px 80px As provided

For an easier comparison with previous evaluations, we

use a combination of available Middlebury datasets for our

experiments. This extended Middlebury stereo dataset con-

sists of the two stereo pairs from the 2003 dataset [23]

(MB03Q), six stereo pairs from the 2005 dataset [24, 25]

(MB05T, the remaining three do not have ground-truth dispa-

rity maps available), all 21 image pairs from the 2006 dataset

[24, 25] (MB06T), and all image pairs from the 2014 training

dataset [3] (MB14Q), leading to a total of 44 stereo pairs.

The images were captured indoors in a lab environment and

depict objects with varying complexity. For each dataset, we

evaluate on the smallest spatial resolution available and use

maximum disparities as provided (see Table 1 for details).

The minimum disparity is always set to 0 pixels. As per the

datasets specifications, the values of the calculated disparities

are considered correct if the difference to the ground-truth is

within 1 pixel. We always evaluated the algorithms using the

confidences and disparity maps of left images.

4.2. Evaluation

The ability to distinguish correct disparity assignments from

wrong ones is the most desirable property of a confidence

measure. To quantitatively evaluate this, the accuracy of dis-

parity assignments based on confidences is evaluated using

curves of error rate as a function of disparity map density (see

Fig. 2 (d)), based on Gong and Yang [26]. The error rate

is defined as the percentage of wrong pixels with respect to

the density p. All disparities are sorted in decreasing order of

confidence and disparity maps of increasing density are pro-

duced by selecting disparities according to rank. This mea-

sures the capability of removing errors from a disparity map

according to the confidence values. The area under the curve

(AUC) quantifies the capability of the confidence measure to

effectively distinguish good matches from wrong ones. Better

confidence measures result in lower AUC values.

Given a disparity map, a subset P of pixels is extracted in

order of decreasing confidence (e.g., 5% of the total pixels)

and the error rate of this subset is computed as the percent-

age of pixels, with respect to the density p, with an absolute

distance from ground-truth values (including occluded pixels)

higher than a threshold. Then, the subset is increased by ex-

tracting more pixels (e.g., an additional 5%) and the error rate

is computed, until all the pixels in the image are considered.

When confidences have identical values, all disparities with

equal confidences are included into the subsample. This in-

creases the density, therefore the x-axis in Fig. 2 (d) is labeled

with minimum density.

The theoretically optimal AUC can be achieved by select-

ing all correct disparities before starting to fill the quasi-dense

disparity maps with the remaining wrong ones and is defined

as in [17]:

Aopt =

∫ 1

1−ε

p− (1− ε)

p
dp = ε+ (1− ε)ln(1− ε), (3)

where p is the density and ε is the disparity error rate at

full density as introduced in [17]. Following this protocol,

we evaluate the three confidence measures on the extended

Middlebury dataset, using the stereo algorithm MC-CNN as

input. This method adopts a winner takes all (WTA) strat-

egy and infers costs using a local method, comparing image

patches using a convolutional neural network. We used the

fast architecture network, trained by the authors Žbontar and

Le Cun on the KITTI 2012 dataset. We also adopt our own

post-processing method, consisting of a 9 × 9 box-filter (Eq.

4) operating on the cost volume, which improves the results

even further.

c′(x, y, d) =
4∑

i=−4

4∑
j=−4

c(x+ i, y + j, d) (4)

4.3. Results

In Fig. 2, (a) one of the input images (Teddy, MB03Q), with

(b) ground-truth disparities, and (c) confidences from CCNN

are shown. Estimated disparities and the confidences com-

puted by our proposed method can be found in Fig. 1. In Fig.

2 (d), the disparity density (p) vs the error rate for the Teddy

image pair from the Middlebury 2003 dataset is shown. By

combining these results for all image pairs into one graph,

we end up with Fig. 3. For each stereo pair in the extended

Middlebury dataset, the obtained AUC is depicted. The lower

the value, the better the confidence measure. All results are

sorted by AUC values with respect to our proposed method.

Observing these figures, we can see that our proposed

method clearly outperforms LRD and CCNN for all image

pairs in our dataset. Our proposed method improves 54.2% on
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Fig. 2. (a) Teddy image from MB03, (b) GT disparities

(brighter is closer) and (c) the confidences from CCNN

(brighter is higher, scaled for better visualization). In (d),

error rates for Teddy at different densities are shown, with

curves for LRD, proposed, CCNN and optimal. Besides from

the theoretically optimal curve, the proposed method has the

lowest error rate for almost every density.

the CCNN measure, indicating that a non-learning based ap-

proach can outperform a machine learning-based one. How-

ever, existing machine learning-based confidence measures

could benefit from including our confidence measure as an

additional feature.

For completeness, we also integrated our confidence mea-

sure into the ADCensus [27] stereo algorithm. The cost func-

tion is a combination of Sum of Absolute Difference (SAD)

and Census. Evaluating on the extended Middlebury dataset,

we obtained the average AUC values as shown in Table 2.

Our proposed confidence measure obtains similar results to

the CCNN confidence measure. We believe we cannot outper-

form the state-of-the-art using this stereo algorithm as input,

due to the noise present in the cost-curve.

To give some additional insight, we also measured the ex-

ecution time, see Table 2. The LRD and proposed algorithms

are not optimized for speed, both are implemented in Mat-

lab. CCNN is a GPU implementation. As expected, LRD is

the fastest, as it does not evaluate all cost values and utilizes

some of the builtin Matlab optimizations for finding minima.

CCNN is the slowest, as it cannot be integrated into the dis-

Table 2. Average AUC values and execution time evaluat-

ing different confidence measures on the extended Middle-

bury dataset, using ADCensus to compute the cost function,

compared to using the MC-CNN with box-filter as input.
LRD CCNN Proposed Optimal

MC-CNN AUCmean 0.188 0.168 0.077 0.039

ADCensus AUCmean 0.266 0.223 0.224 0.090

Avg. execution time 1.865s 28.373s 5.386s -
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Fig. 3. AUC values for the three confidence measures us-

ing MC-CNN as input, evaluated on the extended Middlebury

dataset. Lower values are better. Sorted by AUC with respect

to proposed method. Our proposed method outperforms the

state-of-the-art methods on all stereo pairs.

parity estimation and an image has to be copied to the GPU

memory.

5. CONCLUSION AND FUTURE WORK

In this paper we proposed a novel confidence measure, re-

viewed and evaluated two state-of-the-art confidence mea-

sures and compared them to our proposed method. Our eval-

uation, using the MC-CNN stereo algorithm and the extended

challenging Middlebury dataset, clearly highlights that our

proposed method outperforms the currently best performing

confidence measure CCNN by 54.2%. Our confidence com-

putation does not need any machine learning and can be ap-

plied directly to most stereo algorithms (provided a cost vol-

ume is available). The execution time is of the same or-

der of magnitude as LRD and several times smaller than for

CCNN, while performance is better. This evaluation shows

that learning-based methods can be outperformed by conven-

tional approaches and that our proposed method would be an

useful addition to machine learning-based confidence mea-

sures.

Future work includes the integration of the proposed con-

fidence measure into different applications, e.g., disparity

post-processing algorithms [13], multi-view-stereo, and data

fusion. The improvement of initial disparity maps, could lead

to improved depth-image-based-rendering results.
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