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ABSTRACT

Disparity estimation algorithms mostly lack information
about the reliability of the disparities. Therefore, errors in
initial disparity maps are propagated in consecutive process-
ing steps. This is in particularly problematic for difficult
scene elements, e.g., periodic structures. Consequently, we
introduce a simple, yet novel confidence measure that filters
out wrongly computed disparities, resulting in improved final
disparity maps. To demonstrate the benefit of this approach,
we compare our method with existing state-of-the-art con-
fidence measures and show that we improve the ability to
detect false disparities by 54.2%.

Index Terms— Stereo Vision, 3D reconstruction, dispa-
rity estimation, confidence measure, CNN.

1. INTRODUCTION

Stereo disparity estimation is one of the most researched and
active fields within computer vision. This is mainly because
estimated disparities using existing algorithms are not accu-
rate enough and the computational costs are often too high
[1, 2, 3]. In recent years, deep-learning methods increased
the accuracy of such algorithms [4, 5]. Overall, more accu-
rate disparity maps can improve the results for depth-image-
based-rendering methods. Initial disparity maps are mostly
computed from two stereo images, and later combined with
disparity maps computed from other camera pairs. Fusion
of multiple disparity seems to be straightforward, however,
due to false disparities, it is not. False disparities are being
propagated and thus result in unreliable disparity maps. We
propose a new confidence measure to filter out these initially
false disparities.

In this paper, we introduce a novel confidence measure
based on conventional approaches [6, 7, 8, 9, 10, 11, 12], in
which confidences are assigned by examining the cost curves.
When we assume that truly corresponding pixels have the
minimal matching cost, the ideal cost curve as a function of
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(a) Estimated disparities

(b) Our confidences

Fig. 1. (a) Estimated disparities MC-CNN + box-filter
(brighter is closer) for Teddy (Fig. 2 (a)) image from MBO03
and (b) the confidences from our proposed confidence mea-
sure (brighter is higher, scaled for better visualization).

disparity for a pixel, has a single, distinct minimum. How-
ever, most cost curves are ambiguous because they have
multiple minima or multiple adjacent disparities with similar
costs, making localization of the exact disparity hard. The
shape of the cost curve heavily depends on the stereo algo-
rithm used. Some algorithms tend to be more sensitive to
noise and produce cost curves without an easy to distinguish
global minimum. We examine our proposed method and
compare it to two state-of-the-art methods according to their
ability to rank potential matches. As Spyropoulos and Mor-
dohai already envisioned in their paper [13], we use the stereo
method developed by Zbontar and Le Cun [4] to compute the
matching costs. They trained a convolutional neural network
(CNN) to predict whether two image patches match or not.

The remainder of this paper is structured as follows. In
Section 2, we list related work, while in Section 3, our pro-
posed method is introduced. An in-depth discussion about the
experimental results is provided in Section 4, followed by the
conclusion and future work in Section 5.

2. RELATED WORK

In recent years, many confidence measures aiming at detect-
ing unreliable disparity assignments, proved to be very ef-
fective cues when combined with state-of-the-art stereo algo-
rithms [5, 14, 15, 16]. The ability to reliably detect failures
of a stereo algorithm by means of a confidence measure is
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fundamental and many approaches have been proposed for
this purpose. Hu and Mordohai [17] were the first ones to
exhaustively review and compare confidence measures avail-
able at that time and defined an effective metric to evaluate
the performance of the different measures. New confidence
measures have been introduced and evaluated, most measures
are based on deep learning [5, 18] and other machine learn-
ing methods [13, 14, 15, 16, 19]. The latest thorough eval-
uation of 76 state-of-the-art confidence measures has been
performed by Poggi et al. [20] in 2017. In this, a similar
trend as in the evaluation of stereo algorithms can be seen,
machine learning based approaches clearly outperform con-
ventional approaches.

Based on previous evaluations, we selected the state-of-
the-art confidence measures Left-Right Difference (LRD)
[17] and Confidence CNN (CCNN) [18], and compare their
performance to the performance of our proposed method.
Following [17], to better clarify which cues are processed by
each single measure we use the following notation.

Given a stereo pair of rectified left (L) and right (R) im-
ages, we compute the cost volumes c{R,L}(x, y,d) that con-
tain cost values for each possible match within the defined
disparity range from a pixel in the left image I (xr,y) to a
pixel in the right image Ir(zR,y), and vice versa. Disparity
is defined conventionally as d = x;, — zr. The minimum
and maximum disparity values, dpyin and dyax, are provided
by the dataset (Section 4.1). Thus, the cost curve of a pixel
is the set of cost values for all allowable disparities for the
pixel. crry1(,y) and cqrpy2(,y) indicate the minimum
and second minimum values of the cost curve, respectively,
cqrLy2(2,y) does not have to be a local minimum. The dis-
parity value d(cr}1(2,y)) is denoted by dr 11 (z,y).

We will now describe the two state-of-the-art methods in
more details. The LRD confidence measure Cyrp(zy,y) fa-
vors a large margin between the two smallest minima of the
cost for pixel (xp,y) in the left image. Also consistency of
the minimum costs between the left-to-right and right-to-left
disparity maps: ( ) ( )

CL2\Tr,Y) — CLi\TrL, Y
o) = o ) - e e
with zr = xp, —d(xL, y) and € a very small value to avoid
zero-devision.

The intuition is that truly corresponding pixels should re-
sult in similar cost values and thus a small denominator. This
formulation provides safeguards against two failure modes. If
the margin cro(zr,,y) — ci(zr,y) is large, but the pixel has
been mismatched the denominator will be large. If the margin
is small, the match is likely to be ambiguous. In this case, a
small denominator indicates that a correspondence between
two similar pixels has been established. According to [17],
LRD is one of the best overall confidence measures for stereo
inputs.

As a second confidence measure, we use CCNN. In this
approach, confidence prediction is regressed by a CNN with-

out extracting any cue from the stereo input images. The deep
network, trained on patches, learns from scratch a confidence
measure by processing only the left disparity map, normalized
with respect to the maximum disparity, to values between zero
and one. For the evaluation we used the source code provided
by the authors (using 8 bit confidence maps). This confidence
measure has been identified by Poggi er al. [20] as the best
performing one. However, training of such a neural network
is an additional issue.

We evaluate these confidence measures using the stereo
method Matching Cost Convolutional Neural Network (MC-
CNN) developed by Zbontar and Le Cun [4]. An eight-layer
network is trained on pairs of patches to compute a measure
of similarity between them. These outputs represent match-
ing scores for every possible disparity of each pixel. The
scores are adaptively aggregated [21] and optimized using
semi-global matching (SGM) to obtain the highly ranked re-
sults on the KITTI benchmark [22]. Zbontar and Le Cun
proposed an accurate architecture and a faster/simplified one,
skipping cross-based aggregation. The latter showed a re-
markable speed-up with respect to the accurate CNN archi-
tecture (0.8 sec vs 67 sec) with an increase of the error rate
smaller than 1% on both KITTI datasets. We compute our
cost volumes using the code provided by the authors, using
their fast architecture. We use the network that is pre-trained
on the KITTI 2012 dataset [22], which is different from our
test set, to avoid a biased evaluation.

3. PROPOSED METHOD

Our proposed method computes a confidence solely based on
the cost curve for each pixel in the disparity map. The confi-
dence value for each pixel indicates how likely the assigned
disparity is correct. Our confidence measure is defined as
Clry) = Y
max(min(Ad(z,y,d)—1, =50 ) 0)
max(Ac(z,y,d)— %uy) ,1)
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with Ad(z,y,d) = |d — di(x,y)| and Ac(z,y,d) =
C(.’E, Y, d) - (xv y)'

Multiple local minima, corresponding to multiple small
values of Ac(z,y,d), in the cost curve indicate uncertainty
about the disparity value of the pixel, therefore, the confi-
dence should be low. Empirical tests indicated the importance
of the distance between multiple minima. A higher distance,
i.e. larger Ad(z,y,d), indicates a higher uncertainty for the
disparity value. We subtract 1 from Ad(z,y,d), to not pe-
nalize two minima next to each other, as this is most likely a
quantization error and will be fixed in post-processing steps.
To avoid negative penalties, the maximum with 0 is taken. If
there are multiple local minima more than 1 pixel apart, the
confidence decreases. The decrease in confidence is clipped
at % A large margin between the global minimum and
all other costs is favored, as then it’s most likely to be the cor-



rect disparity. This margin is empirically defined as Zen(Z:¥)

where Cmean (2, ) is the average of the costs within the defined
disparity range. Costs within this margin will have a negative
influence on the confidence value, whereas costs outside this
margin, even when belonging to a local minimum, do not have
any influence. To incorporate the influences of all costs, we
sum over the complete disparity range dyin t0 dmax-

>

4. EVALUATION AND RESULTS

We evaluate the two state-of-the-art methods LRD and
CCNN and compare the performance to our proposed method,
using MC-CNN as basis. We maintain the same evaluation
procedure as first described in [17]. For our evaluation, we
use the following dataset.

4.1. Dataset
Table 1. Details of Middlebury datasets used.

| MB03Q MBO5T MBO6T MB14Q
# pairs 2 6 21 15
Resolution | Quarter Third Third Quarter
imax 59px 80px 80px As provided

For an easier comparison with previous evaluations, we
use a combination of available Middlebury datasets for our
experiments. This extended Middlebury stereo dataset con-
sists of the two stereo pairs from the 2003 dataset [23]
(MBO03Q), six stereo pairs from the 2005 dataset [24, 25]
(MBOST, the remaining three do not have ground-truth dispa-
rity maps available), all 21 image pairs from the 2006 dataset
[24,25] (MBO6T), and all image pairs from the 2014 training
dataset [3] (MB14Q), leading to a total of 44 stereo pairs.
The images were captured indoors in a lab environment and
depict objects with varying complexity. For each dataset, we
evaluate on the smallest spatial resolution available and use
maximum disparities as provided (see Table 1 for details).
The minimum disparity is always set to O pixels. As per the
datasets specifications, the values of the calculated disparities
are considered correct if the difference to the ground-truth is
within 1 pixel. We always evaluated the algorithms using the
confidences and disparity maps of left images.

4.2. Evaluation

The ability to distinguish correct disparity assignments from
wrong ones is the most desirable property of a confidence
measure. To quantitatively evaluate this, the accuracy of dis-
parity assignments based on confidences is evaluated using
curves of error rate as a function of disparity map density (see
Fig. 2 (d)), based on Gong and Yang [26]. The error rate
is defined as the percentage of wrong pixels with respect to
the density p. All disparities are sorted in decreasing order of
confidence and disparity maps of increasing density are pro-
duced by selecting disparities according to rank. This mea-
sures the capability of removing errors from a disparity map

according to the confidence values. The area under the curve
(AUC) quantifies the capability of the confidence measure to
effectively distinguish good matches from wrong ones. Better
confidence measures result in lower AUC values.

Given a disparity map, a subset P of pixels is extracted in
order of decreasing confidence (e.g., 5% of the total pixels)
and the error rate of this subset is computed as the percent-
age of pixels, with respect to the density p, with an absolute
distance from ground-truth values (including occluded pixels)
higher than a threshold. Then, the subset is increased by ex-
tracting more pixels (e.g., an additional 5%) and the error rate
is computed, until all the pixels in the image are considered.
When confidences have identical values, all disparities with
equal confidences are included into the subsample. This in-
creases the density, therefore the x-axis in Fig. 2 (d) is labeled
with minimum density.

The theoretically optimal AUC can be achieved by select-
ing all correct disparities before starting to fill the quasi-dense
disparity maps with the remaining wrong ones and is defined
asin [17]:

1
Aopt = / %dp =e+ (1—¢€)n(l—¢), O3
l1—e

where p is the density and e is the disparity error rate at
full density as introduced in [17]. Following this protocol,
we evaluate the three confidence measures on the extended
Middlebury dataset, using the stereo algorithm MC-CNN as
input. This method adopts a winner takes all (WTA) strat-
egy and infers costs using a local method, comparing image
patches using a convolutional neural network. We used the
fast architecture network, trained by the authors Zbontar and
Le Cun on the KITTI 2012 dataset. We also adopt our own
post-processing method, consisting of a 9 x 9 box-filter (Eq.
4) operating on the cost volume, which improves the results
even further.
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4.3. Results

In Fig. 2, (a) one of the input images (Teddy, MB03Q), with
(b) ground-truth disparities, and (c) confidences from CCNN
are shown. Estimated disparities and the confidences com-
puted by our proposed method can be found in Fig. 1. In Fig.
2 (d), the disparity density (p) vs the error rate for the Teddy
image pair from the Middlebury 2003 dataset is shown. By
combining these results for all image pairs into one graph,
we end up with Fig. 3. For each stereo pair in the extended
Middlebury dataset, the obtained AUC is depicted. The lower
the value, the better the confidence measure. All results are
sorted by AUC values with respect to our proposed method.
Observing these figures, we can see that our proposed
method clearly outperforms LRD and CCNN for all image
pairs in our dataset. Our proposed method improves 54.2% on



(b) GT disparity

Teddy MB03Q

—&~ LRD (AUC =0.163)

— % Proposed (AUC = 0.048)
© 300% | |“® CCNN (AUC =0.070)
S 27% [ | —— Optimal (AUC = 0.024)

Minimum density (p)

(c) CCNN confidences

(d) MC-CNN with box-filter
Fig. 2. (a) Teddy image from MBO03, (b) GT disparities
(brighter is closer) and (c) the confidences from CCNN
(brighter is higher, scaled for better visualization). In (d),
error rates for Teddy at different densities are shown, with
curves for LRD, proposed, CCNN and optimal. Besides from
the theoretically optimal curve, the proposed method has the
lowest error rate for almost every density.

the CCNN measure, indicating that a non-learning based ap-
proach can outperform a machine learning-based one. How-
ever, existing machine learning-based confidence measures
could benefit from including our confidence measure as an
additional feature.

For completeness, we also integrated our confidence mea-
sure into the ADCensus [27] stereo algorithm. The cost func-
tion is a combination of Sum of Absolute Difference (SAD)
and Census. Evaluating on the extended Middlebury dataset,
we obtained the average AUC values as shown in Table 2.
Our proposed confidence measure obtains similar results to
the CCNN confidence measure. We believe we cannot outper-
form the state-of-the-art using this stereo algorithm as input,
due to the noise present in the cost-curve.

To give some additional insight, we also measured the ex-
ecution time, see Table 2. The LRD and proposed algorithms
are not optimized for speed, both are implemented in Mat-
lab. CCNN is a GPU implementation. As expected, LRD is
the fastest, as it does not evaluate all cost values and utilizes
some of the builtin Matlab optimizations for finding minima.
CCNN is the slowest, as it cannot be integrated into the dis-

Table 2. Average AUC values and execution time evaluat-
ing different confidence measures on the extended Middle-
bury dataset, using ADCensus to compute the cost function,
compared to using the MC-CNN with box-filter as input.

LRD CCNN  Proposed | Optimal
MC-CNN AUCpean | 0.188 0.168 0.077 0.039
ADCensus AUCpean | 0.266 0.223 0.224 0.090
Avg. execution time | 1.865s  28.373s 5.386s -
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Fig. 3. AUC values for the three confidence measures us-
ing MC-CNN as input, evaluated on the extended Middlebury
dataset. Lower values are better. Sorted by AUC with respect
to proposed method. Our proposed method outperforms the
state-of-the-art methods on all stereo pairs.

parity estimation and an image has to be copied to the GPU
memory.

5. CONCLUSION AND FUTURE WORK

In this paper we proposed a novel confidence measure, re-
viewed and evaluated two state-of-the-art confidence mea-
sures and compared them to our proposed method. Our eval-
uation, using the MC-CNN stereo algorithm and the extended
challenging Middlebury dataset, clearly highlights that our
proposed method outperforms the currently best performing
confidence measure CCNN by 54.2%. Our confidence com-
putation does not need any machine learning and can be ap-
plied directly to most stereo algorithms (provided a cost vol-
ume is available). The execution time is of the same or-
der of magnitude as LRD and several times smaller than for
CCNN, while performance is better. This evaluation shows
that learning-based methods can be outperformed by conven-
tional approaches and that our proposed method would be an
useful addition to machine learning-based confidence mea-
sures.

Future work includes the integration of the proposed con-
fidence measure into different applications, e.g., disparity
post-processing algorithms [13], multi-view-stereo, and data
fusion. The improvement of initial disparity maps, could lead
to improved depth-image-based-rendering results.
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