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ABSTRACT

Most of the current audio coding schemes use transforms like the Modified Discrete Cosine Transform (MDCT) to
calculate a blockwise frequency representation of the audio signal. Since these transforms usually produce floating
point values even for integer input samples, a quantization process is necessary to achieve a reduction of data rate.
This paper presents a new transform with perfect reconstruction that produces integer output values. The transform
is called IntMDCT and is derived from the MDCT preserving most of its attractive properties. It provides a good
spectral representation of the audio signal, critical sampling and overlapping of blocks. A lossless audio coding scheme
may be built by simply cascading IntMDCT with an entropy coding scheme.

INTRODUCTION

Today audio coding is used for many applications both in
the consumer and the professional market. The upcoming
of lossless coding and the increased precision of 24 bit linear
audio make rounding errors a serious issue for implementers.
Most of the current audio coding schemes use transforms resp.
filterbanks to get a blockwise frequency representation of the
audio signal. These transforms usually produce floating point
values even for integer input samples. So quantization is nec-
essary to achieve a reduction of data rate. When applying

these transforms to lossless audio coding, either the quanti-
zation has to be fine enough to allow neglecting the resulting
error, or the error signal has to be coded additionally in time
domain [1], [2], [3].

An optimal transform for lossless audio coding should have
the following properties:

Perfect reconstruction
By applying forward and inverse transform the input signal
should be reconstructed without error.
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Discrete spectral values

The transform should produce a discrete range of output val-
ues for discrete input values to enable a reduction of data rate
without quantization.

Low range of spectral values
The range of spectral values should be as low as possible to
achieve a high coding gain.

Good frequency selectivity
Tonal input signals should result in compaction of energy to
a low number of coefficients.

Fast Algorithm
The transform should provide an algorithm that is at least as
fast as algorithms for established transforms.

A promising approach for meeting these requirements is in-
troduced in [4] by the lifting scheme. This technique allows
to approximate Givens Rotations by mapping integers to in-
tegers in a reversible way. Therefore every transform that can
be decomposed into Givens Rotations can be approximated
by a lossless integer transform. For transforms focusing on
image coding this technique was already used several times.
In [5] an 8-point lossless Discrete Cosine Transform (DCT) is
obtained by this idea. In [6] an 8-point lossless Lapped Or-
thogonal Transform (LOT) is described. In [8], [9], [10] this
technique is further refined to get fast multiplierless approxi-
mations of DCT and LOT used for image coding. The lifting
scheme can also be utilized for the Fast Fourier Transform
(FFT), as shown in [11].

Recently the lifting scheme was initially utilized for percep-
tual audio coding [12]. An Integer Discrete Cosine Transform
is used to remove inter-channel redundancy of a multichan-
nel audio signal in a lossless way after quantization of MDCT
coefficients of individual channels.

In this paper we will show that the MDCT itself can also be
decomposed into Givens-Rotations and the lifting scheme can
be applied.

This paper is organized as follows: After a short review of the
Modified Discrete Cosine Transform a decomposition of this
transform into Givens rotations is presented. Then the lifting
scheme is introduced, which allows to approximate the decom-
posed transform by a reversible integer transform. The per-
formance of this integer transform for audio coding is evalu-
ated and some possible entropy coding schemes are presented.
Finally additional coding tools are considered.

THE MODIFIED DISCRETE COSINE TRANS-
FORM

The Modified Discrete Cosine Transform (MDCT) is widely
used in modern audio coding schemes. It provides critical
sampling, overlapping of blocks and good frequency selectiv-
ity. To achieve critical sampling in combination with overlap-
ping blocks a subsampling in frequency domain is performed.
This subsampling introduces aliasing in time domain which
is cancelled by an overlap and add of two succeeding blocks
in the synthesis filterbank. This technique introduced in [13],
[14] is called Time Domain Aliasing Cancellation (TDAC).

For a block ¢ 2N time domain samples z¢(k),k =0,...,2N—1
are used to calculate N spectral lines X¢(m),m =0,..., N—1.
Two succeeding blocks overlap by 50%, so each block pro-
cesses N new time domain samples. For a smooth overlapping
of blocks a window w(k),k =0,...,2N — 1 is used.
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The MDCT formula is given by

—= 2N -1
X (m) = %rz:w@hMMcw<i%@k+l+NX%n+D)
k=0
m=0,...,N—1

The formula for the inverse MDCT is

- N—-1

2 Z X¢(m) cos (&(QkJr 1+ N)2m+ 1))

k) = w2
m=0

k=0,...,2N —1

By applying forward and inverse MDCT a time domain alias-
ing error is introduced. This error is cancelled by adding the
outputs of the inverse MDCT of two succeeding blocks ¢ and
t 4+ 1 in the overlapping part:

zy(k) = ye(N + k) + ye+1 (k)
k=0, N—1

To ensure this time domain aliasing cancellation the windows
of two succeeding blocks have to fulfill certain conditions in
their overlapping part. A sufficient condition for time domain
aliasing cancellation is:

w(k)? +w(N+k)?2=1
w(k) = w2N —1—k) 1)
k=0,...,N—1

An example for a window fulfilling this condition is a sine
window

w(k) = sin( 7 (2k + 1))
k=0,...,2N —1

MDCT BY DCT-IV AND GIVENS ROTATIONS

An MDCT with a window length of 2N can be reduced to
a Discrete Cosine Transform of Type IV (DCT-IV) with a
length of N. This is achieved by performing Time Domain
Aliasing (TDA) explicitly in time domain and consecutively
applying the DCT-IV.
If we define the time domain aliased signal

z(k),

k=0,...,N—1

by
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2 = w( A Rm ) (2)
~u(f 1=K 1)
G(N-1-k) = w(gw)xt(%m 3)
+w(%flfk)mt(%flfk)
K=o, . N _4
2

the formula for the MDCT reduces to

—N-1
Xi(m) = % 3" —#(N—1-Fk)cos (&(Qk +1)(2m+ 1))
k=0

m=0,...,N—1

which is the application of a length N DCT-IV to
—Z(N—-1—-k), k=0,...,N—1

The left half of the window for block ¢ overlaps with the right
half of block ¢t — 1. From equation (3) it follows that this part
of the input signal is used for the MDCT of block ¢t — 1 by

3N N
CEAH SR
WX kY k)
N N

+w(37717k)zt(5717k)

G (N—1—k) =

=S w(g—l—k).rt(g-'rk)

N N
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(5 + k(S )
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Combining this with equation (2) for block t we see that in
the overlapping part of the two succeeding blocks t — 1 and
t the time domain signal z¢(k),k = 0,..., N — 1 is prepared
for application of DCT-IV by

From the TDAC condition in equation (1) it follows that

N N
w(3+k)2+w(3—l—k)2:1

so for certain angles

w(f —1-k)
w( G +k)

— N
k=0,... Y1

o, = arctan

this preprocessing in time domain can be written as an appli-
cation of Givens rotations

cosay —sinag
sin ag Ccos Qg

For the inverse MDCT the same procedure can be applied
in reversed order. The inverse DCT-IV is the DCT-IV it-
self. The rotations applied for windowing and time do-
main aliasing are reverted by applying rotations with angles

k=0 N 1 —ag,k =0,..., % — 1. The whole process is illustrated in
=S5 T Figure 1.
x(0) = - x(0)
vee DCT-IV DCT-IV
x(N/2-1) I [y S x(N/2-1)
x(N/2) = y(0) - x(N/2)
X(N-1) = y(N/2-1) — x(N-1)
x(N) DCT-IV | o y(N/2) _ | DCT-IV x(N)
X(N+N/2-1) —  y(N-1) —
X(N+N/2) = - X(N+N/2)
X(2N-1) DCT-IV | o _ | DCT-IV X(2N-1)

Fig. 1: Decomposition of MDCT and inverse MDCT into Givens rotations and DCT-IV
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With this decomposition of MDCT it is easy to see that the
window shape can be chosen individually in each frame as de-
scribed in [16]. Based on rotations this window shape adap-
tion can be performed by changing the rotation angles for
combined windowing and time domain aliasing in each frame.
For perfect reconstruction it is only necessary to choose the
negative angles of each frame in the inverse transform. So
a window shape sequence like the one presented in [17] and
illustrated in figure 2 is possible.

Fig. 2: Typical window shape sequence for MDCT

DCT-IV BY GIVENS ROTATIONS

The Discrete Cosine Transform of Type IV (DCT-IV) with
length N is given by

— N—-1

X¢(m) = % Z z(k) cos (ﬁ(%z +1)(2m + 1))
k=0

m=0,..., N—-1

The coefficients of DCT-IV build an orthonormal NzN ma-
trix. Every orthonormal NxzN matrix can be decomposed
into w Givens rotations [18]. But this decomposition is
not unique. Other decompositions using a lower number ro-
tations are possible. Some fast algorithms for DCT-IV focus
on reducing the number of these rotations to a magnitude of
O(N logy N). A possible decomposition is described in [19].
In [21] another decomposition of DCT-IV into Givens rota-
tion is described implicitly by presenting a fast algorithm for
the MDCT.

THE LIFTING SCHEME

The application of a Givens Rotation

cosa —sina
(sin « cos a )
is illustrated in figure 3.
cos +
—sina
sin «
cos a +

Fig. 3: Givens rotation

This Givens rotation can be decomposed into three lifting

steps:
cosa —sina) _ (1 % 1 0\ (1 %
sin a cosa | \0 1 sina 1 0 1
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)

This decomposition is illustrated in figure 4.

cosa—1
sin o

sin o cosa—1
sin o«

+

Fig. 4: Givens rotation by three lifting steps

We can now include a rounding function

r:R—127
into each of these lifting steps to get an integer approxima-
tion.

The application of the second lifting step

(z1,22) — (1,22 + 1 sina)

for example is approximated by

(z1,22) — (1,22 + r(z1sina))

In this map the first component is not modified. So r(z1 sin «)
can still be calculated after applying this map. So the inverse
map can be built by

(2], 25) — (¢, 25 — r(a) sina))

Therefore the integer approximation of the lifting step can
be inverted without introducing any error. Applying this ap-
proximation to each of the three lifting steps we get an integer
approximation of the Givens rotation. This rounded rotation
can be reverted without introducing an error by applying the
inverse rounded lifting steps in reverse order using the same
rounding function.

If the rounding function r is odd symmetric the inverse
rounded rotation is identical to the rounded rotation with
angle —a

cos sin
—sina  cosa

Figure 5 illustrates the inverse rotation by lifting steps.

] ) 1]
_cosa—1 —sina
Sin o«

_cosa—1
sin o

+

Fig. 5: Inverse Givens rotation by three lifting steps

THE INTEGER MODIFIED DISCRETE COSINE
TRANSFORM (INTMDCT)

Replacing each Givens-Rotation of the MDCT decomposition
described above by these rounded rotations, the output values
stay integer, when integer input values are used. Nevertheless
the whole process is invertible by applying the inverse rota-
tions in reverse order. So we have an integer approximation
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of the MDCT preserving perfect reconstruction. We call it
the Integer Modified Discrete Cosine Transform (IntMDCT).

PERFORMANCE OF INTMDCT

This new transform produces integer output values instead of
floating point values. It provides perfect reconstruction, so no
error is introduced by applying forward and inverse transform.
This transform is derived from the Modified Discrete Cosine
Transform (MDCT). Therefore it preserves most properties of
the MDCT: It has an overlapping structure providing better
frequency selectivity than non-overlapping block transforms.
Due to Time Domain Aliasing Cancellation (TDAC) critical
sampling is maintained, so the total number of spectral values
representing an audio signal does not exceed the number of
input samples.

To study the frequency selectivity of IntMDCT it has to be
considered that the result heavily depends on the level of the
input signal. Due to the rounding in the rotation steps nonlin-
earities are included. So it is not possible to see this transform
as an application of FIR filters and to compute the frequency
responses. Therefore we try to get an impression of the fre-
quency selectivity of IntMDCT by comparing the IntMDCT
spectrum of certain input signals with the MDCT spectrum.

Figures 6 and 7 show the absolute values of MDCT and Int-
MDCT spectrum of a 1 kHz sine wave with a level of -20dB
(SQAMO1, [22]). For this signal the MDCT achieves a bet-
ter rejection at high frequencies than the IntMDCT. Here the
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IntMDCT reaches the limit of resolution for integer values
and rounding errors of cascaded rounded rotations pile up.
The absolute range for this rounding errors stays constant
for most of the input signals. So the frequency selectivity of
IntMDCT depends on the level of the input signal. For sine
waves with a high level it is still comparable to the frequency
selectivity of the MDCT.

For normal audio signals containing more than one frequency
the rounding errors do not affect the spectrum as much as
for sine waves. In figure 8 the absolute values of MDCT and
IntMDCT spectrum of a part of Carl Orff’s Carmina Burana
(SQAMG64, [22]) are compared in one plot together with the
difference values. The difference values are not correlated
with the spectral values, they have a constant order of mag-
nitude in the whole spectral domain.

From a perceptual point of view the spectra in figure 8 are
equal for most of the frequency bands. For audio signals con-
taining a certain energy in each frequency band the difference
between MDCT and IntMDCT is masked. So it may also be
considered to use IntMDCT as an approximation of MDCT
for perceptual audio coders.

Another interesting property of IntMDCT is a certain kind
of energy preservation. Due to the overlapping structure an
energy preservation on a block by block basis like the one
described by Parseval’s Theorem is not given. Energy can
be distributed unequally between two succeeding blocks. But
the averaged energy per block is maintained because in the

1.0x164—T

1.0x104

1.0x16

1.0x16

1.0x104

1.0x16

4 MDCT

- 1 I WWMWMWMM ‘ ‘ ‘ |
1.0x102 -

1000

Fig. 6: Absolute values of MDCT spectrum, length 1024, sine window, SQAMO1, Sine 1kHz -20dB
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complete process only rounded Givens Rotations are applied
which roughly preserve energy. So the range of integer spec-
tral values does not exceed the range of input values by far.
The additional dynamics in the range of spectral values com-
pared with dynamics of the input signal only results from the
energy compaction property of IntMDCT.

FAST ALGORITHM

The algorithm for IntMDCT is essentially based on fast al-
gorithms for DCT-IV resp. MDCT using as low number of
rotations. Givens rotations require four floating-point mul-
tiplications when applied directly for MDCT. Based on the
lifting scheme only three floating-point multiplications are re-
quired for each rotation of IntMDCT. But on the other hand

butterflies
1 -1
1 1

are calculated without multiplications for MDCT. For Int-
MDCT these butterflies have to be implemented as rounded
Givens rotations with an angle of w/4 to ensure the energy
preservation described above. This leads to three additional
floating-point multiplications for each butterfly. So overall
the computational complexity of MDCT and IntMDCT is
roughly comparable when the lifting steps of IntMDCT are
implemented by floating-point multiplications and roundings.

But the lifting scheme offers the possibility to further re-
duce computational complexity without loosing the perfect

reconstruction property. This is achieved by approximat-
ing the floating-point lifting coefficients by dyadic numbers
(k-2™,k,m € Z) and performing the floating-point multipli-
cations by shift and addition operations. This multiplierless
approximation was introduced for image coding applications
in [8], [10].

ENTROPY CODING
Concepts for entropy coding

IntMDCT provides a good spectral representation of the au-
dio signal while staying in the integer domain. When applied
to tonal parts of an audio signal this results in a good energy
compaction. So an efficient lossless coding scheme can be
built by simply cascading IntMDCT with an entropy coding
scheme. This coding scheme should fit to the properties of the
IntMDCT values. In contrast to entropy coding schemes for
transform coding described in [23] and [1] the spectral values
to be coded are not dynamically scaled to certain quantization
step sizes. So a wide range of values has to be considered.

To adapt to different statistics and ranges of the integer spec-
trum the spectral domain is decomposed into bands adapted
to the Bark scale. One possible decomposition is described in
[23] using approximately two bands per Bark. For each band
a different Huffman code book can be used. Possible lengths
of codebooks can be from one up to e.g. 4096. Values greater
than the maximum value can be coded by stacked coding, as
described in [1].

1.0x164— T
1.0x104
1.0x1G4
1.0x104

1.0x10+

1.0x104
1.0x10° | | ‘
1.0x102

4 IntMDCT

1000

Fig. 7: Absolute values of IntMDCT spectrum, length 1024, sine window, SQAMO01, Sine 1kHz -20dB
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Due to the the absence of scaling another coding scheme may
be considered: When most of the spectral lines of one band
have to be coded using escape values, stacked coding can be
very inefficient. It could be more convenient to scale down
all values by a certain power of 2 until they fit to the desired
codebook and additionally code the omitted LSBs. Compared
with the alternative of using bigger codebooks this technique
saves memory for storing codebooks. It is assumed to be ap-
propriate because no additional coding gain will be achieved
by codebooks exceeding the dynamic range of spectral values
to be coded. As an interesting side effect a near lossless coder
may be built by simply omitting some of the LSBs.

Results of entropy coding

First results for the compression efficiency are obtained us-
ing the following setup: For IntMDCT a frame length of
1024 samples and a sine window is used. The entropy coding
scheme is implemented using eight huffman codebooks with
lengths from one up to 16384 together with stacked coding.
The codebook can be switched individually for each band.

The sound material used for testing comes from the SQAM
compact disc [22]. These items have shown to be very critical
for perceptual audio coding and have often been used as a
reference for lossless audio coding.

Encoding all tracks an average data rate of 4.9 bit per sample
is achieved. But for a realistic estimation of lossless coding
efficiency for other audio signals it has to be considered that

1.0x164—
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the SQAM items contain lots of zero samples at the begin-
ning and at the end of each track. Therefore frames which
only contain zero samples are omitted in the following results.
Encoding all tracks with zero frames omitted the average data
rate increased to 5.6 bit per sample.

In figure 9 the average bit rates for individual SQAM items
are presented. Especially for the artificial signals (tracks 3-7)
and some of the single instruments items (tracks 8-43) a high
coding gain is achieved. The worst case item for this compres-
sion scheme is Carl Orfl’s Carmina Burana (track 64) with an
average bit rate of 9.1 bit per sample. This complex item con-
tains choir and orchestra and has a very rich spectrum, see
figure 8.

Besides the average data rate it is also important to know
which maximum data rate usually occurs. In these test results
the highest peak data rates measured were 14.9 bit per sam-
ple for track 31 (cymbal) and track 65 (orchestra, R. Strauss),
and 13.9 bit per sample for track 27 (castanets). In all these
items the peak data rates occur at transient parts of the sig-
nal.

ADDITIONAL CODING TOOLS

To enhance the performance of the lossless coding scheme de-
scribed above two additional coding tools may be considered:

Linear Prediction in Frequency Domain

With the technique of entropy coding in spectral domain a

1.0x10+

1.0x10

1.0x16+

1.0x1G+

1.0x10+

1.0x104

1.0x101

"

1.0x10°2

1 ait

MDCT

4 IntMDCT

% h | m“

1000

|

Fig. 8: Absolute values of MDCT, IntMDCT and difference spectrum, length 1024, sine window, SQAM64, Orff
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high coding gain can be reached especially for tonal signals.
For transient parts of the signal the coding gain is low due to
the flat spectrum of transient signals. As described in [24],
[25] this flatness can be exploited by applying linear prediction
in frequency domain. Two alternatives are described there.
One uses an open loop predictor, the other uses a closed loop
predictor. The first alternative is also known as Temporal
Noise Shaping (TNS). The quantization after the prediction
lead to an adaption of the resulting quantization noise to the
temporal structure of the audio signal and therefore prevents
preechos in perceptual audio coders. This technique is used in
MPEG-2 AAC [23]. For lossless audio coding the second alter-
native is more appropriate because the closed loop prediction
allows perfect reconstruction of the input signal. When ap-
plying this technique to the IntMDCT spectrum a rounding
to integer values has to be performed after each step of the
prediction filter to stay in the integer domain. By using the
inverse filter and the same rounding the original spectrum can
be reconstructed perfectly.
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Joint Stereo Coding

To use the redundancy between two channels mid-side-coding
can be applied in a lossless way by applying a rounded rota-
tion with angle /4. Compared with the alternative of just
calculating sum and difference of left and right channel the
rounded rotation has the advantage of preserving energy. The
usage of joint stereo coding can be switched on and off for each
band, as done in [23]. Other rotation angles may also be con-
sidered to reduce redundancy between two channels in a more
flexible way.

For multichannel signals the lossless redundancy reduction
scheme based on Integer Discrete Cosine Transform described
in [12] may be considered.

CONCLUSIONS

In this paper we have presented a new integer transform for
audio coding. This transform is derived from the Modified

EBU SQAM

10 T T T T T T

bit per sample

5 10 15 20 25 30

35
track #

40 45 50 55 60 65 70

Fig. 9: Average bit rates for SQAM items, zero frames omitted
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Discrete Cosine Transform using the lifting scheme. This Int-
MDCT preserves most of the attractive properties of MDCT:
It provides perfect reconstruction, overlapping of blocks, crit-
ical sampling, good frequency selectivity and a fast algorithm.
Additionally IntMDCT only produces integer output values
for integer input samples. So a lossless audio coder can be
built by cascading IntMDCT with an entropy coding scheme.
This lossless audio coding scheme provides good compression
efficiency.
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