

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 1

ABSTRACT

This document is a developer’s guide that shows how the AAC-ELD codec included in the Android
operating system can be accessed from third party audio communication applications. Thereby, it
illustrates how developers can create their own innovative applications and services using the high quality
audio codec that is also used by Apple's FaceTime.

This text describes the required processing steps and application programming interface calls needed to
implement a real-time audio processing application. This includes the presentation of Android's
AudioRecord and AudioTrack classes that are used to create a generic sound card interface for audio
recording and playback as well as a discussion of how-to implement an AAC-ELD encoder and decoder
using the MediaCodec API. These building blocks are then used to create an application that can record,
encode, decode and play back audio frames. Finally, it is shown how the created encoder and decoder
classes can be used from native code and libraries using the Java Native Interface APIs. In addition to the
source code examples presented within the text, the complete source code of the demo application is
available together with this document as a ready to use project.

The scope of the example application is limited for simplicity and does thus not cover transmission over IP
or other advanced features such as error concealment or jitter buffer management. The development and
integration of these components into a complete Voice over Internet Protocol application is a challenging
task but can be simplified through the Fraunhofer Audio Communication Engine, which is described briefly
at the end of this document.

APPLICATION BULLETIN

AAC-ELD based Audio Communication on

Android

 V2.8 - 25.07.2014

F R A U N H O F E R I N S T I T U T E F O R I N T E G R A T E D C I R C U I T S I I S

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 2

1 INTRODUCTION

With the introduction of FaceTime, Apple started a new era of Voice over IP (VoIP) communication. An
increasing number of people now use video conferencing on their iPhone, iPad, and Mac devices and
enjoy excellent audio and video quality while chatting with friends and family members. One of the
enabling components of FaceTime is the MPEG-4 AAC Enhanced Low Delay (AAC-ELD) audio codec,
which provides high audio quality at low delay and low bit rates [1]. Particularly interesting for Android
developers is the recent inclusion of a fully featured AAC-ELD encoder and decoder by Google into their
Android operating system starting with version 4.1 (Jelly Bean). Moreover, OEMs are also required to
integrate the audio codec in order to fulfill the Google compatibility definitions [2]. Thereby, it is basically
guaranteed that every new Android-compatible device is capable of using AAC-ELD for audio encoding
and decoding. This creates an extensive user base for new high-quality communication software on
Android devices.

The basic components of a real-time VoIP application are depicted in Fig. 1. At its core there are two
audio processing chains running in parallel. Audio data that will be sent over the network is recorded,
encoded with an appropriate audio codec such as AAC-ELD and packetized into an RTP packet prior to
transmission. Simultaneously, incoming RTP packets are depacketized, decoded, and played back via
speakers or headphones. These two processing chains are usually termed the sender and the receiver and
are present at both ends of the communication, i.e. in the local as well as in the remote client [3].

If hands-free operation is desired, Echo Control (EC) as a pre-processing step becomes another important
part of the sender, while in the receiver Jitter Buffer Management (JBM) is an invaluable component that
tries to compensate variations in network delay through buffering while keeping the overall playback
delay low. Finally, Session Setup, e.g. via the Extensible Messaging and Presence Protocol (XMPP) or the
Session Initiation Protocol (SIP), Graphical User Interface (GUI) and other control functionalities are
required for a complete system. Because this application bulletin cannot cover all the above-mentioned
components and their interaction, we will focus on a simple subset for the main part of this paper in
Section 2 and 3. In Section 4 and 5 interoperability to iOS is discussed and information about the demo
source code is provided. Finally, in Section 6 we will return to some of the more advanced features in
VoIP and point to our SDK that can greatly reduce the development time for VoIP applications employing
AAC-ELD.

record ec encode pack

play decode unpackjbm

send

receive

control, session setup, gui

gui: graphical user interface

ec: echo control

jbm: jitter buffer management

spk

mic

p
c
m ip

local client remote

client

record ec encode pack

play decode unpackjbm

send

receive

control, session setup, gui

gui: graphical user interface

ec: echo control

jbm: jitter buffer management

spk

mic

p
c
m ip

local client remote

client

Figure 1: Basic components of a VoIP application.

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 3

2 AAC-ELD BASED AUDIO COMMUNICATION ON ANDROID

In the following sections we describe the interfaces of the Android SDK that are required in order to
implement high-quality audio recording, AAC-ELD encoding, AAC-ELD decoding and playback on
Android based devices. It is assumed that the reader is already familiar with the basic concepts of
Android application development and the Java programming language. For section 3, familiarity with the
C and the C++ programming languages is assumed. Please note that the provided code samples are
tuned for simplicity. Therefore, only a minimum of error checking and abstraction is employed and thus
the samples will not fulfill the requirements of production quality code. For in-depth information about
the Android platform and its APIs, the reader is referred to [4].

Despite the reduced scope and limitations of the example application, the provided source code can be
used as starting point for a full-featured Audio-Over-IP application or as a reference for extending existing
projects. The discussion in this application bulletin, however, is limited to audio I/O (recording, playback)
and audio coding (encoding, decoding) as depicted in Fig. 2.

record aac-eld

encode

play aac-eld

decode
spk

mic

pcm

record aac-eld

encode

play aac-eld

decode
spk

mic

pcm

Figure 2: Reduced scope of the demo application.

2.1 AUDIO PROCESSING FOR COMMUNICATION

As explained previously, audio processing for real-time communication applications happens within two
individual parts of the application running in parallel. In the sender part of the application, audio is
recorded and subsequently encoded to a compressed format, while in the receiver part of the application
incoming packets are decoded and played out. The audio samples for recording and playback are usually
in a 16-bit Linear-PCM (LPCM) format. Depending on the number of channels used, a sample can consist
of one or more indivdiual values (e.g. one value for mono, two values for stereo and so on). Audio APIs
usually deliver a buffer containing a certain number of audio samples at a time. A collection of such
associated audio samples is called a frame. The exact number of audio samples contained within a frame
obtained from the audio hardware is usually implementation dependent but can sometimes be adjusted
by an API call. For low-latency communication applications, it is desirable to have the audio hardware
return the smallest number of samples possible, i.e. to operate with the lowest possible delay. This is also
reflected by the fact that AAC-ELD is designed to operate on frames containing 480 or 512 samples (i.e.
the framesize is 480 or 512) for a single processing step, which corresponds to about 10 or 11 miliseconds
of audio data at a sampling rate of 44.1 kHz. As we will see, the frame sizes delivered by the
AudioRecord recording API are usually larger due to internal buffering and thus should be split into
multiple chunks of the ELD framesize before processing. Note that this internal buffering, of course, adds
additional delay to the audio stream.

Although the AAC-ELD encoder that is included in the Android platform supports framesizes of 480 and
512 for encoding, with the current Java API only a fixed framesize of 512 can be used. More configuration
options of the encoder may become available as the Java API evolves.

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 4

2.2 AUDIO RECORDING AND PLAYBACK: THE SOUNDCARD CLASS

In order to access the sound card for real time audio processing within a Java Android application, the
classes AudioRecord and AudioTrack can be used for recording and playback. For simultaneous
recording and playback, the provided demo implementation aggregates individual instances of these
classes into a class named SoundCard (Listing 1). The SoundCard class implements two inner classes

named Player and Recorder that represent two individual threads of processing and use an

AudioTrack instance and an AudioRecord instance to implement their behavior, respectively. Audio

samples are delivered by the Player instance to a client of the SoundCard class by implementing the

ISoundCardHandler interface. The implementation of these classes is discussed in the next Section.

// Interface that has to be implemented by clients of the SoundCard class 1
interface ISoundCardHandler { 2
 public boolean process(byte[] inputBuffer, byte[] outputBuffer); 3
} 4
 5
// Simple sound card abstraction using constant parameters for simplicity 6
public class SoundCard { 7
 public static final int sampleRate = 44100; 8
 public static final int nChannels = 1; 9
 public static final int bytesPerSample = 2; // 16 bit PCM 10
 11
 private int bufferSize = 0; 12
 private ISoundCardHandler soundCardHandler; 13
 private Recorder recorder; 14
 private Player player; 15
 16
 17
 // Method will return minimum audio buffer size for recording scaled up to the 18
 // nearest multiple of 512 19
 static int recorderBufferSize() { /* ... */ } 20
 21
 // Method will return minimum audio buffer size for playback scaled up to the 22
 // nearest multiple of 512 23
 static int playoutBufferSize() { /* ... */ } 24
 25
 // Simple audio buffer holding bufferSize samples 26
 private class AudioBuffer { 27
 byte[] data = new byte[bufferSize]; 28
 } 29
 30
 // Audio recorder running as a thread 31
 private class Recorder extends Thread { /* ... */ } 32
 private class Player extends Thread { /* ... */ } 33
 34
 SoundCard(ISoundCardHandler soundCardHandler) { 35
 this.soundCardHandler = soundCardHandler; 36
 int recordBufferSize = recorderBufferSize(); 37
 int playoutBufferSize = playoutBufferSize(); 38
 39
 // Determine audio buffer sizes 40
 bufferSize = Math.max(recordBufferSize, playoutBufferSize); 41
 } 42
 43
 public void startCallback() { 44
 // Create and start recorder and player instances 45
 recorder = new Recorder(); 46
 player = new Player(); 47
 recorder.start(); 48
 player.start(); 49
 } 50
 51
 public void stopCallback() { /* ... */ } 52
} 53

Listing 1: The SoundCard class.

In order to keep the implementation as simple as possible, the audio configuration that is used is fixed.
The audio sampling rate is set to 44.1 kHz, which is one of the standard sampling rates that must be
supported by any Android device [10] and the channel configuration is mono (i.e. one audio channel). In
the SoundCard constructor, the minimum buffer sizes that are required for recording and playback are

determined using the AudioTrack.getMinBufferSize() and

AudioRecord.getMinBufferSize() API calls providing the fixed audio configuration as parameters.
As the AAC-ELD implementation in Android requires a frame size of 512, the obtained minimum buffer
sizes are scaled up to a multiple of 512 samples. This is done within the static SoundCard class methods

recorderBufferSize() and playoutBufferSize(). The maximum of both buffer sizes is then

used to create AudioFrame instances, which is a simple abstraction for native byte[] buffers capable of

holding a single audio frame at a time. The startCallback() method then simply creates a Recorder
and a Player instance and starts their respective threads for processing.

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 5

2.3 AUDIO RECORDING

Implementing the Recorder class is quite straightforward (Listing 2). Internally, an AudioRecord
instance configured with the fixed audio parameters is used for obtaining recorded audio samples from
the hardware. In order to enable synchronization between the recording thread and the player thread,
the Recorder instance uses an ArrayBlockingQueue of AudioBuffer instances to store its
samples.

// Audio recorder running as a thread

private class Recorder extends Thread {

 // New AudioRecord instance using fixed parameters
 private final AudioRecord record = new

 AudioRecord(MediaRecorder.AudioSource.VOICE_COMMUNICATION,

 sampleRate, AudioFormat.CHANNEL_IN_MONO,

 AudioFormat.ENCODING_PCM_16BIT, bufferSize);

 // Frames will hold successfully recorded audio frames

 private final ArrayBlockingQueue<AudioBuffer> frames

 = new ArrayBlockingQueue<AudioBuffer>(1);

 // FramesPool holds a pool of already allocated audio buffer memory

 private final LinkedBlockingQueue<AudioBuffer> framesPool
 = new LinkedBlockingQueue<AudioBuffer>();

 public Recorder() {

 // create some audio buffers and pool them

 for (int i = 0; i != 3; ++i)
 framesPool.add(new AudioBuffer());

 }

 @Override

 // Run the recorder thread
 public void run() {

 record.startRecording();

 while (!isInterrupted()) {

 // check if we have already an empty frame in the pool
 AudioBuffer frame = framesPool.poll();

 if (frame == null)

 frame = new AudioBuffer(); // if not, create one

 record.read(frame.data, 0, frame.data.length); // record samples

 try {

 // add recorded frame to the ArrayBlockingQueue

 if (!frames.offer(frame, 20, TimeUnit.MILLISECONDS)) {

 framesPool.add(frame); // if failed, drop samples

 }

 }

 catch (InterruptedException e) {

 interrupt();

 }
 }

 record.stop();

 record.release();

 }
 }

Listing 2: Implementation of the Recorder class.

When running, the recording thread continuously reads audio samples from the audio hardware using
the read() method of the AudioRecord instance. The obtained audio data is then stored in the array
queue to be read from the corresponding player thread. In order to avoid constant reallocation and
deallocation of AudioFrame instances, the Recorder instance additionally keeps a
LinkedBlockingQueue of AudioFrame instances to store unused but already allocated

AudioFrame buffers.

2.4 AUDIO PLAYBACK

The implementation of the Player class is shown in Listing 3. For playback, the AudioTrack class is
used. When creating an instance of this class, it should be configured with the stream type
AudioManager.STREAM_VOICE_CALL to indicate phone call stream usage. Additionally, the play out

mode must be set to AudioTrack.MODE_STREAM in order to indicate to the system that the audio
data is not provided fully before playback start, but rather is constantly added to the stream during
processing. Once the player thread is started, it continuously polls the ArrayBlockingQueue created

in the Recorder instance for recorded audio frames. After a recorded AudioFrame has been obtained,

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 6

the process() method of the client class (i.e. the class implementing the ISoundCardHandler
interface) is called, passing the recorded frame as argument for processing. When this call returns, the
client should have filled the outputBuffer byte buffer with the samples that should be played back.

These samples are then played out with a call to the write() method of the AudioTrack instance.

private class Player extends Thread {

 // New AudioTrack instance using fixed parameters

 private final AudioTrack player
 = new AudioTrack(AudioManager.STREAM_VOICE_CALL, sampleRate,

 AudioFormat.CHANNEL_OUT_MONO,

 AudioFormat.ENCODING_PCM_16BIT,

 bufferSize, AudioTrack.MODE_STREAM);

 // Buffer where output samples will be stored by the client

 private final byte[] outputBuffer = new byte[bufferSize];

 public Player() {}

 @Override

 public void run() {

 player.play();

 while (!isInterrupted()) {
 AudioBuffer inputSamples;

 try {

 // Try to get recorded samples from the ArrayBlockingQueue

 inputSamples = recorder.frames.take();

 } catch (InterruptedException e) {
 interrupt();

 continue;

 }

 // Provide recorded samples to the client and receive output samples

 if (!soundCardHandler.process(inputSamples.data, outputBuffer))

 interrupt();

 // Free the input sample frame

 recorder.framesPool.add(inputSamples);

 // Playback audio

 player.write(outputBuffer, 0, outputBuffer.length);

 }

 player.stop();

 player.release();

 }

 }

Listing 3: Implementation of the Player class.

The process() method that has to be implemented by the client that is using the SoundCard class is
where the audio samples are encoded to AAC-ELD and subsequently decoded to LPCM again. Before the
implementation of this method is shown, we need to discuss the implementation of the AAC-ELD
encoder and decoder classes, respectively.

2.5 AAC-ELD ENCODING AND DECODING

Knowing how to access the AAC-ELD encoder and decoder is one of the crucial parts when developing
an audio communication application. In Android, AAC-ELD coding is accessible through instances of the
MediaCodec class that is contained within the android.media package. Based on this class, we

create an AacEldEncoder and an AacEldDecoder class that wrap the MediaCodec interface into a
straightforward and simple to use encoder and decoder abstraction. Moreover, creating this simple
abstraction allows for easy re-use of the encoder and decoder classes when accessing them via the JNI
interface later. The class definitions of the AacEldEncoder and AacEldDecoder classes are given in
Listing 4. As can be seen, basically only two methods for each class are sufficient to perform AAC-ELD
encoding and decoding: configure() and encode() for the encoder as well as decode() for the

decoder. Additionally, a close() method is provided for resource cleanup.

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 7

public class AacEldEncoder {

 // The encoder instance

 private MediaCodec m_encoder;
 // Encoder output buffer information

 private MediaCodec.BufferInfo m_bufferInfo;

 // Initialization state

 private Boolean m_isInitialized = false;

 // MIME type and encoder name for AAC-ELD encoding

 private final static String MIME_TYPE = "audio/mp4a-latm";

 private final static String OMX_ENCODER_NAME = "OMX.google.aac.encoder";

 public AacEldEncoder() {}

 public byte[] configure(int sampleRate, int channelCount, int bitrate) { /* ... */ }

 public byte[] encode(byte[] pcmFrame) { /* ... */ }

 public void close() { /* ... */ }

}

public class AacEldDecoder {

 // The MediaCodec instance used as decoder

 private MediaCodec m_decoder;

 // Output buffer information

 private MediaCodec.BufferInfo m_bufferInfo;

 private Boolean m_isInitialized = false;

 // The constant mime-type and decoder name for AAC

 private final static String MIME_TYPE = "audio/mp4a-latm";

 private final static String OMX_DECODER_NAME = "OMX.google.aac.decoder";

 public AacEldDecoder() {}

 public boolean configure(byte[] asc) { /* ... */ }

 public byte[] decode(byte[] au) { /* ... */ }

 public void close() { /* ... */ }

}

Listing 4: Class definitions of the AacEldEncoder and AacEldDecoder classes.

Despite their different purposes, the encoder and the decoder instances are configured in a quite similar
fashion. In Summary, the steps that must be performed to successfully configure MediaCodec instances
for AAC-ELD encoding or decoding are:

1. Create an instance of the class android.media.MediaFormat that will describe the audio
format by specifying a MIME type, the sample rate and the desired number of audio channels.
The MIME type for audio coding with AAC and thus also AAC-ELD on Android is "audio/mp4a-
latm". Other MIME types will not work for creating an AAC encoder or decoder. Note that the
sampling rate and the number of audio channels are only required for encoder initialization. The
corresponding configuration for the decoder is contained within an audio specific configuration
(ASC) that is generated by a standard conforming AAC-ELD encoder [6]. Therefore, these values
can be set to 0 during decoder configuration.

2. In order to configure additional parameters of the audio encoder, one can use the method
setInteger(key, value)of the just created MediaFormat instance. The individual
configuration parameters are specified as key-value pairs [5]. For enabling AAC-ELD encoding in
the AAC encoder object, the value of the key KEY_AAC_PROFILE must be set to

MediaCodecInfo.CodecProfileLevel.AACObjectELD. The desired encoder output

bitrate can be specified using the key KEY_BIT_RATE. For initialization of the decoder, neither
the profile level key nor the bitrate key have to be set as these parameters are also contained
within the ASC provided by the encoder. The ASC can be transferred to the decoders
MediaFormat instance by calling the method setByteBuffer(key, buffer) using the
string "csd-0" as key (csd = codec specific data).

3. Subsequently, an encoder and decoder instance can be created by calling the static class method
MediaCodec.createByCodecName(name). Currently the name for the AAC encoder is
"OMX.google.aac.encoder" and the name for the decoder is "OMX.google.aac.decoder".
These names can be obtained by using the getCodecInfoAt() method of the

android.media.MediaCodecList class. Internally, for AAC coding, the Android

MediaCodec implementation is a wrapper using the native Fraunhofer FDK AAC codec libraries.
Note: the valid codec names may vary, depending on the respective Android OS version. Be sure
to check if the name is still valid when deploying your software for a different OS version!

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 8

4. Configure the codec with the previously created MediaFormat instance by calling the method

configure() on the codec instance. In order to configure a MediaCodec instance for

encoding, additionally the constant MediaCodec.CONFIGURE_FLAG_ENCODE has to be

passed as the last parameter to the configure() call.

5. Finally, start the encoder and decoder by calling start() on the respective MediaCodec
instance.

Once the individual MediaCodec instances for AAC-ELD encoding and decoding are initialized and
started, they can be used for encoding and decoding LPCM to AAC-ELD and vice-versa. Encoding LPCM
samples to AAC-ELD access units using the MediaCodec API is buffer based and works on internal audio
buffers provided by the encoder wrapper. Therefore, an input buffer index has to be requested first by
calling the method dequeueInputBuffer(timeout) on the encoder instance. In the demo
application, a timeout value of 0 is used, meaning that the call will return immediately in order to avoid
thread blocking. If a valid buffer is returned (index value >= 0), that buffer can be accessed by calling
getInputBuffers() and indexing the returned array of ByteBuffer objects. The LPCM data that

should be encoded can now be copied into this buffer. Finally, a call to queueInputBuffer() is used
to tell the encoder that the data in the input buffer is available for encoding.

In order to obtain the encoded AU, an output buffer index has to be requested by calling
dequeueOutputBuffer(bufferInfo, timeout) on the encoder instance. In contrast to the

dequeueInputBuffer() method, dequeueOutputBuffer() receives an additional parameter of

type MediaCodec.BufferInfo. The BufferInfo instance is used to describe the returned output
buffer with respect to size and type. If an output buffer is available, it can be accessed by indexing the
ByteBuffer array returned from a call to getOutputBuffers(). Once the output data (i.e. the
encoded AU) has been copied from the returned buffer, it has to be released for reuse by calling
releaseOutputBuffer(bufferIndex, …). Note that the first buffer obtained from a correctly

configured MediaCodec encoder instance is the ASC that is required for decoder initialization. The ASC

can be distinguished from an encoded AU buffer by checking the flags field of the BufferInfo

instance. If the flags field is equal to MediaCodec.BUFFER_FLAG_CODEC_CONFIG, then the returned
output buffer contains an ASC.

The complete implementation of the configure() and encode() methods of the AacEldEncoder
class is given in Listing 5. Since the ASC will be generated right after codec configuration, that data is
already obtained during configuration and returned by the configure() method. Note that the actual
encoding (and decoding) of data happens asynchronously, i.e. there might be additional delay before
output buffers are available. Since the presented implementation requires that data be returned
immediately, however, a very simple form of output buffer polling is implemented. Thereby, the
dequeueOutputBuffer() method is called repeatedly until a valid output buffer index is obtained. In

order to prevent application blocking, the number of tries is limited before a null object is returned to
signal an error.

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 9

public class AacEldEncoder {

/* ... */

public byte[] configure(int sampleRate, int channelCount, int bitrate) {

 try {

 MediaFormat mediaFormat

 = MediaFormat.createAudioFormat(MIME_TYPE, sampleRate, channelCount);
 mediaFormat.setInteger(MediaFormat.KEY_AAC_PROFILE,

 MediaCodecInfo.CodecProfileLevel.AACObjectELD);

 mediaFormat.setInteger(MediaFormat.KEY_BIT_RATE, bitrate);

 m_encoder = MediaCodec.createByCodecName(OMX_ENCODER_NAME);
 m_encoder.configure(mediaFormat, null, null, MediaCodec.CONFIGURE_FLAG_ENCODE);

 m_encoder.start();

 m_bufferInfo = new MediaCodec.BufferInfo();

 int ascPollCount = 0;

 byte[] aubuf = null;

 while (aubuf == null && ascPollCount < 100) {
 // Try to get the asc

 int encInBufIdx = -1;

 encInBufIdx = m_encoder.dequeueOutputBuffer(m_bufferInfo, 0);

 if (encInBufIdx >= 0) {

 if (m_bufferInfo.flags == MediaCodec.BUFFER_FLAG_CODEC_CONFIG) {
 aubuf = new byte[m_bufferInfo.size];

 m_encoder.getOutputBuffers()[encInBufIdx].get(aubuf, 0, m_bufferInfo.size);

 m_encoder.getOutputBuffers()[encInBufIdx].position(0);

 m_encoder.releaseOutputBuffer(encInBufIdx, false);

 }
 }

 ++ascPollCount;

 }

 if (aubuf != null)

 m_isInitialized = true;

 return aubuf;

 } catch (Exception e) {
 System.out.println("ERROR configuring the encoder: " + e.getMessage());

 return null;

 }

 }

 public byte[] encode(byte[] pcmFrame) {

 try {

 if (!m_isInitialized)

 return null;

 // When we have a valid PCM frame we enqueue

 // it as an input buffer to the encoder instance

 if (pcmFrame != null) {

 int encInBufIdx = m_encoder.dequeueInputBuffer(0);

 if (encInBufIdx >= 0) {
 m_encoder.getInputBuffers()[encInBufIdx].position(0);

 m_encoder.getInputBuffers()[encInBufIdx].put(pcmFrame, 0, pcmFrame.length);

 m_encoder.queueInputBuffer(encInBufIdx, 0, pcmFrame.length, 0, 0);

 }

 }

 byte[] aubuf = null;

 int aubufPollCnt = 0;

 while (aubuf == null && aubufPollCnt < 100) {
 int encInBufIdx = m_encoder.dequeueOutputBuffer(m_bufferInfo, 0);

 if (encInBufIdx >= 0) {

 aubuf = new byte[m_bufferInfo.size];

 m_encoder.getOutputBuffers()[encInBufIdx].get(aubuf, 0, m_bufferInfo.size);

 m_encoder.getOutputBuffers()[encInBufIdx].position(0);
 m_encoder.releaseOutputBuffer(encInBufIdx, false);

 }

 ++aubufPollCnt;

 }

 return aubuf;

 } catch (Exception e) { // Handle any unexpected encoding issues here

 return null;

 }
 }

}
Listing 5: Configuration and encoding with the AacEldEncoder class.

Decoding of encoded AUs into LPCM frames is done accordingly, as the same API is used for this purpose.
The implementation is shown in Listing 7. The only notable difference between the two implementations
is the configure() method and the way the ASC is passed to the decoder. When audio processing is

finished, the encoder and decoder should be stopped by calling stop() and their internal resources

should be released with a call to release(). This is done in the close() method.

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 10

public class AacEldDecoder {

 /* ... */

 public boolean configure(byte[] asc) {

 try {

 MediaFormat mediaFormat = MediaFormat.createAudioFormat(MIME_TYPE, 0, 0);

 ByteBuffer ascBuf = ByteBuffer.wrap(asc);

 mediaFormat.setByteBuffer("csd-0", ascBuf);

 // Create decoder instance using the decoder name

 m_decoder = MediaCodec.createByCodecName(OMX_DECODER_NAME);
 // Configure the decoder using the previously created MediaFormat instance

 m_decoder.configure(mediaFormat, null, null, 0);

 // Start the decoder

 m_decoder.start();

 // Create object for output buffer information

 m_bufferInfo = new MediaCodec.BufferInfo();

 m_isInitialized = true;

 } catch (Exception e) {

 System.out.println("ERROR configuring the decoder: " + e.getMessage());

 m_isInitialized = false;

 }

 return m_isInitialized;

 }

 public byte[] decode(byte[] au) {

 try {
 if (!m_isInitialized)

 return null;

 if (au != null) {
 int decInBufIdx = m_decoder.dequeueInputBuffer(0);

 if (decInBufIdx >= 0) {

 m_decoder.getInputBuffers()[decInBufIdx].position(0);

 m_decoder.getInputBuffers()[decInBufIdx].put(au, 0, au.length);

 m_decoder.queueInputBuffer(decInBufIdx, 0, au.length, 0, 0);
 }

 }

 byte[] pcmbuf = null;

 int pcmbufPollCnt = 0;

 while (pcmbuf == null && pcmbufPollCnt < 100) {

 int decBufIdx = m_decoder.dequeueOutputBuffer(m_bufferInfo, 0);

 if (decBufIdx >= 0) {

 pcmbuf = new byte[m_bufferInfo.size];
 m_decoder.getOutputBuffers()[decBufIdx].get(pcmbuf, 0, m_bufferInfo.size);

 m_decoder.getOutputBuffers()[decBufIdx].position(0);

 m_decoder.releaseOutputBuffer(decBufIdx, false);

 }

 ++pcmbufPollCnt;
 }

 return pcmbuf;

 } catch (Exception e) {

 return null;

 }
 }

 public void close() { /* ... */ }

}

Listing 7: Configuration and decoding with the AacEldDecoder class.

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 11

2.6 BRINGING IT ALL TOGETHER: THE MAIN ACTIVITY

The MainActivity class is the entry point of the presented demo and thus the place where the

SoundCard and the AacEldEncoder and AacEldDecoder classes are combined in order to make up
for a working sample application (Listing 7). Since a basic familiarity of the reader with Android
application programming is assumed, only the details relevant to this application bulletin are discussed.

// The main activity for the demo application

public class MainActivity extends Activity implements ISoundCardHandler, View.OnClickListener {

 // The simple sound card implementation

 private SoundCard m_soundCard;

 // The Java interface to the encoder and the decoder

 private AacEldEncoder m_encoder;

 private AacEldDecoder m_decoder;

 // For demo purposes, we use a fixed sampling rate, a mono channel configuration

 // and an encoder bitrate of 65 kbps

 static private final int encoderBitrate = 65000;

 static private final int frameSize = 512;

 /* ... */

 @Override

 public void onClick(View v) {

 /* ... */

 m_encoder = new AacEldEncoder();

 m_decoder = new AacEldDecoder();

 m_decoder.configure(

 m_encoder.configure(SoundCard.sampleRate,

 SoundCard.nChannels,

 MainActivity.encoderBitrate));

 m_soundCard = new SoundCard(this);

 m_soundCard.startCallback();

 /* ... */

 }

 // Processes audio frames of 512 samples each

 private void processFrame(byte[] inFrame, byte[] outFrame) {

 byte[] outAU = m_encoder.encode(inFrame);

 byte[] tmpOut = m_decoder.decode(outAU);

 // Ensure that a valid sample buffer is returned even

 // if decoding fails

 if (tmpOut == null) java.util.Arrays.fill(outFrame, (byte) 0);

 else System.arraycopy(tmpOut, 0, outFrame, 0, outFrame.length)

 }

 @Override

 public boolean process(byte[] inputBuffer, byte[] outputBuffer) {

 // We need to split the input buffer into framesize-sized frames

 // because ELD requires frames containing 512 samples per packet

 if (inputBuffer.length != outputBuffer.length || inputBuffer.length % frameSize != 0)

 throw new RuntimeException("Error! Cannot handle bogus sized audio buffers in this demo!");

 final int nChunks

 = inputBuffer.length / (frameSize*SoundCard.nChannels*SoundCard.bytesPerSample);

 byte[] inBuf = new byte[frameSize*SoundCard.nChannels*SoundCard.bytesPerSample];

 byte[] outBuf = new byte[frameSize*SoundCard.nChannels*SoundCard.bytesPerSample];

 for (int i = 0; i < nChunks; ++i) {

 System.arraycopy(inputBuffer,

 i*frameSize*SoundCard.nChannels*SoundCard.bytesPerSample,

 inBuf, 0, inBuf.length);

 processFrame(inBuf, outBuf);

 System.arraycopy(outBuf, 0,

 outputBuffer,

 i*frameSize*SoundCard.nChannels*SoundCard.bytesPerSample, outBuf.length);

 }

 return true;

 }

}
Listing 8: Parts of the MainActivity class.

As can be seen from Listing 8, the MainActivity class aggregates the SoundCard and the

AacEldEncoder and AacEldDecoder classes. Moreover, it implements the ISoundCardHandler

interface which means that the process() method for audio processing is implemented here. The very
simple GUI to this application shows a single button and touches on this button will be handled within the
MainActivities onClick() method. Here, new instances of the encoder and decoder classes are
created. The encoder is initialized with the current sampling rate, the number of channels and the encoder

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 12

bitrate, which is set to 65 kilobits per second (kbps) in the demo. Subsequently, the decoder is initialized
with the return value of the encoders configure() method, i.e. the ASC created by the encoder. Finally, an
instance of the SoundCard class is created and the startCallback() method is invoked. As a result,

audio processing starts and the process() method will be called by the SoundCard object whenever
there is audio data available. As mentioned earlier, the audio buffers delivered by the hardware are usually
larger than the framesize required for AAC-ELD encoding and decoding. Therefore, they are split into
individual frames of the required framesize each (here 512 samples per frame) before processing. These
frames are then passed to the method processFrame(), where they are encoded and subsequently
decoded again. Note that the decoder will require up to two AUs before it can start the actual decoding
of audio data (this is called priming). Therefore it is ensured that the processFrame method returns valid
audio samples even when the decoder returns no data (silence).

3 AAC-ELD CODING USING THE JAVA NATIVE INTERFACE

When implementing a fully featured VoIP application, it is often desirable to perform most of the required
audio processing in native code and resort back to the Java environment only for providing the user
interface. While accessing the device sound card from native code is quite easily accomplished using the
OpenSL APIs provided by the Android NDK, there is no such native API or library for using the audio
coding facilities in Android [11, 13]. As a consequence, native applications or application libraries that
want to use the AAC-ELD codec built into the Android OS will have to use the Java Native Interface (JNI)
API, not to call native code from Java, but to call the Java MediaCodec APIs from native code [14]. In the
following, we will show how the encoder and decoder implementations from the previous sections can
be accessed from native C++ code running within an Android application environment. Thereby, the
discussion will focus on how to call Java from native code and thus it is assumed that the reader is already
familiar with using JNI for calling native code from Java.

3.1 NATIVE IMPLEMENTATION PREREQUISITES

In order to modify the presented example such that the audio encoding and decoding is performed in
C++ code, a new Java class called NativeAudioProcessor with methods init(), process() and

close() is introduced (Listing 9). This class acts as an entry point to the native implementation that is
presented next and its implementation is shown in Listing 10. Having defined this class, the
processFrame() method of the MainActivity class (Listing 8) will be modified to call the

process() method of an NativeAudioProcessor instance, which in turn will call the process

method of a C++ class named AudioProcessor that is meant as a placeholder representing any other
native audio processing library that requires AAC-ELD coding (Listing 11).

During the init() method of the NativeAudioProcessor instance, an object of type

AudioProcessor is created. Additionally, memory buffers that can hold a single audio frame for input
and output audio are allocated. Because these buffers are required to exist across multiple calls to
process(), pointers to the native buffers are stored as the private class fields

InputAudioFrameHandle and OutputAudioFrameHandle. Likewise, a pointer to the

AudioProcessor instance is stored in a field of the NativeAudioProcessor instance in order to
ensure that it will be accessible during the lifetime of the applications processing loop. Note that because
Java does not know pointer types, it is required to store the associated pointer values in a Java data type
that is most likely to be able to hold the value of a pointer. Hence, the data type long is used for this

purpose, as the long type should be capable of holding 64 bit values on current platforms. For audio

data processing, the process() method then only copies the data passed as Java byte[] buffers via

JNI to the previously allocated std::vector buffers and calls the process() method of the

AudioProcessor class.

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 13

public class NativeAudioProcessor {

 // Load required native libraries when
 // the first instance of this class is

 // created

 static {

 System.loadLibrary("gnustl_shared");

 System.loadLibrary("android_aaceld");
 }

 // Private variables storing pointers

 // to native object instances

 private long AudioProcessorHandle;
 private long InputAudioFrameHandle;

 private long OutputAudioFrameHandle;

 // The native methods that take care of interacting with the native

 // audio processing part of the demo project
 native boolean init(int sampleRate,

 int nChannels,

 int bitrate,

 int framesize,

 int noOfBytesPerSample);
 native boolean process(byte[] inSamples, byte[] outSamples);

 native boolean close();

}
Listing 9: Class NativeAudioProcessor.

static jfieldID AUDIO_PROCESSOR_FIELDID = NULL;

static jfieldID AUDIO_INPUT_FRAME_FIELDID = NULL;

static jfieldID AUDIO_OUTPUT_FRAME_FIELDID = NULL;

JNIEXPORT jboolean JNICALL Java_de_fraunhofer_iis_android_1aaceld_NativeAudioProcessor_init

 (JNIEnv *env, jobject obj, jint sampleRate, jint nChannels,

 jint bitrate, jint framesize, jint noOfBytesPerSample) {

 // Get field IDs that will store handles to the AudioProcessor, in and out frame classes

 jclass nativeAudioProcessorClass = env->GetObjectClass(obj);

 AUDIO_PROCESSOR_FIELDID = env->GetFieldID(nativeAudioProcessorClass, "AudioProcessorHandle", "J");

 AUDIO_INPUT_FRAME_FIELDID = env->GetFieldID(nativeAudioProcessorClass, "InputAudioFrameHandle", "J");

 AUDIO_OUTPUT_FRAME_FIELDID = env->GetFieldID(nativeAudioProcessorClass, "OutputAudioFrameHandle", "J");

 JavaVM *vm = NULL;

 env->GetJavaVM(&vm);

 AudioProcessor *p = new AudioProcessor(sampleRate, nChannels, bitrate, framesize, noOfBytesPerSample, (void*)vm);

 const int audioFrameByteSize = framesize * nChannels * noOfBytesPerSample;

 std::vector<unsigned char> *inFrame = new std::vector<unsigned char>(audioFrameByteSize, 0);

 std::vector<unsigned char> *outFrame = new std::vector<unsigned char>(audioFrameByteSize, 0);

 env->SetLongField(obj, AUDIO_PROCESSOR_FIELDID, (jlong)p);

 env->SetLongField(obj, AUDIO_INPUT_FRAME_FIELDID, (jlong)inFrame);

 env->SetLongField(obj, AUDIO_OUTPUT_FRAME_FIELDID, (jlong)outFrame);

}

JNIEXPORT jboolean JNICALL Java_de_fraunhofer_iis_android_1aaceld_NativeAudioProcessor_process

 (JNIEnv *env, jobject obj, jbyteArray inSamples, jbyteArray outSamples) {

 AudioProcessor *p = (AudioProcessor*)env->GetLongField(obj, AUDIO_PROCESSOR_FIELDID);

 std::vector<unsigned char> *inFrame = (std::vector<unsigned char>*)env->GetLongField(obj,
AUDIO_INPUT_FRAME_FIELDID);

 std::vector<unsigned char> *outFrame = (std::vector<unsigned char>*)env->GetLongField(obj,

AUDIO_OUTPUT_FRAME_FIELDID);

 jbyte *inBytes = env->GetByteArrayElements(inSamples, 0);

 memcpy(&(*inFrame)[0], inBytes, inFrame->size());

 env->ReleaseByteArrayElements(inSamples, inBytes, 0);

 p->process(*inFrame, *outFrame);

 jbyte *outBytes = env->GetByteArrayElements(outSamples, 0);

 memcpy(outBytes, &(*outFrame)[0], outFrame->size());

 env->ReleaseByteArrayElements(outSamples, outBytes, 0);

 return true;

}

JNIEXPORT jboolean JNICALL Java_de_fraunhofer_iis_android_1aaceld_NativeAudioProcessor_close

 (JNIEnv *env, jobject obj) {

 AudioProcessor *p = (AudioProcessor*)env->GetLongField(obj, AUDIO_PROCESSOR_FIELDID);

 std::vector<unsigned char> *inFrame = (std::vector<unsigned char>*)env->GetLongField(obj,

AUDIO_INPUT_FRAME_FIELDID);

 std::vector<unsigned char> *outFrame = (std::vector<unsigned char>*)env->GetLongField(obj,
AUDIO_OUTPUT_FRAME_FIELDID);

 delete p;

 delete inFrame;

 delete outFrame;

 env->SetLongField(obj, AUDIO_PROCESSOR_FIELDID, (jlong)0);
 env->SetLongField(obj, AUDIO_INPUT_FRAME_FIELDID, (jlong)0);

 env->SetLongField(obj, AUDIO_OUTPUT_FRAME_FIELDID, (jlong)0);

 return true;

}
Listing 10: C++ implementation of the NativeAudioProcessor class.

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 14

The implementation of the native AudioProcessor class shown in Listing 11 is very straightforward. It

contains two yet to be defined classes AacEldEncoder and AacEldDecoder that will interface with

their Java counterparts from Section 2 in order to perform audio coding. Besides that, the process()
method is as simple as its Java implementation: encode the input samples to an AU and subsequently
decode that AU for playback. The only notable difference is that the constructor of the
AudioProcessor class as well as that of the AacEldEncoder and AacEldDecoder classes receive

an additional parameter named jvmHandle of type void*.

#ifndef __AUDIOPROCESSOR_H__

#define __AUDIOPROCESSOR_H__

#include <vector>

#include "AacEldEncoder.h"

#include "AacEldDecoder.h"

class AudioProcessor {

public:

 AudioProcessor(int sampleRate,

 int nChannels,

 int bitrate,
 int framesize,

 int noOfBytesPerSample,

 void *jvmHandle);

 ~AudioProcessor();

 void process(std::vector<unsigned char>& inSamples, std::vector<unsigned char>& outSamples);

private:

 AacEldEncoder m_encoder;
 AacEldDecoder m_decoder;

 unsigned int sampleRate;

 unsigned int nChannels;

 unsigned int bitrate;
 unsigned int frameSize;

 unsigned int noOfBytesPerSample;

};

#endif /* __AUDIOPROCESSOR_H__ */

// Implementation

#include "AudioProcessor.h"
#include <stdlib.h>

AudioProcessor::AudioProcessor(int sampleRate,

 int nChannels,

 int bitrate,
 int framesize,

 int noOfBytesPerSample,

 void *jvmHandle)

 : m_encoder(jvmHandle), // <- needs a handle to the JavaVM

 m_decoder(jvmHandle), // <- needs a handle to the JavaVM
 sampleRate(sampleRate),

 nChannels(nChannels),

 bitrate(bitrate),

 frameSize(framesize),

 noOfBytesPerSample(noOfBytesPerSample) {

 std::vector<unsigned char> asc;

 m_encoder.configure(sampleRate, nChannels, bitrate, asc);

 // Use the ASC to initialize the AAC-ELD decoder
 m_decoder.configure(asc);

}

AudioProcessor::~AudioProcessor() {

 m_encoder.close();
 m_decoder.close();

}

void AudioProcessor::process(std::vector<unsigned char>& inSamples,

 std::vector<unsigned char>& outSamples) {

 // 1. Encode the input samples to an encoded access unit (AU)

 std::vector<unsigned char> encodedAU;

 m_encoder.encode(inSamples, encodedAU);

 // 2. Decode the just encoded AU to PCM samples again for playback

 outSamples.resize(frameSize*nChannels*noOfBytesPerSample);

 m_decoder.decode(encodedAU, outSamples);

}

Listing 11: C++ class AudioProcessor declaration and definition.

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 15

This parameter is actually of the type JavaVM* as defined by the JNI API but cast to a void* in order to
enforce a loose coupling between the native implementation and the JNI, which is often desirable.
However, note that this parameter is absolutely required, because later on it will be used to obtain an
associated JNIEnv pointer that is needed in order to perform JNI calls. We cannot use the JNIEnv

pointer that is passed to one of the methods of the NativeAudioProcessor instance directly,
because that pointer is valid only within the context of the current JNI call (e.g. when
NativeAudioProcessor.init() returns, the associated JNIEnv* would become invalid).

Moreover, even though the JNI specification allows to initialize and create a new JavaVM instance

through the JNI API, the Android implementation allows at most one JavaVM instance per process. As a

consequence, it is necessary to obtain a pointer to the JavaVM from a valid JNIEnv* during the init()

method of the NativeAudioProcessor instance and propagate that pointer to all objects that need it
later on (marked bold in Listing 10).

3.2 ACCESSING THE AAC-ELD ENCODER AND DECODER FROM C++

In order to access the Java AacEldEncoder and AacEldDecoder classes from native code, we define
a similar interface in C++ that can be used for encoding and decoding of audio data (Listing 12). Note
that these classes make use of the "pointer-to-implementation"-idiom in an effort to hide the JNI part of
the implementation from the user. Because the implementation of the C++ AacEldEncoder and

AacEldDecoder classes are almost identical, in the following only the implementation of the

AacEldEncoder will be discussed.

#include <vector>

// Encoder class
class AacEldEncoder {

public:

 AacEldEncoder(void *jvmHandle);

 ~AacEldEncoder();

 bool configure(unsigned int sampleRate,

 unsigned int nChannels,

 unsigned int bitrate,

 std::vector<unsigned char>& asc);

 bool encode(std::vector<unsigned char>& inSamples, std::vector<unsigned char>& outAU);

 void close();

private:

 class AacEldEncImpl;

 AacEldEncImpl *impl_;

};

// Decoder class

class AacEldDecoder {

public:

 AacEldDecoder(void *jvmHandle);

 ~AacEldDecoder();

 bool configure(std::vector<unsigned char>& asc);

 bool decode(std::vector<unsigned char>& inAU, std::vector<unsigned char>& outSamples);

 void close();

private:

 class AacEldDecImpl;
 AacEldDecImpl *impl_;

};

Listing 12: C++ declaration of the AacEldEncoder and AacEldDecoder classes.

Before the detailed implementation is shown, we also introduce a small utility class named
JniEnvGuard in Listing 13. As explained in the previous section, the C++ encoder and decoder

implementation receives a pointer to a JavaVM type in order to acquire a JNIEnv pointer later that is

required to make JNI calls and access the Java runtime. However, JNIEnv handles are valid only within

the context of a single thread and cannot be shared between individual threads, because the JNIEnv is

also used for thread-local storage [12]. As a consequence, any JNIEnv handle obtained through a

JavaVM needs to be attached to the current thread of execution before it can be used. Failing to attach

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 16

the JNIEnv to the current thread before making JNI calls will thus result in an error and at worst crash
your program. Moreover, the Android OS will not detach native threads automatically when they are
terminating and thus any application attaching a JNIEnv to its current native thread is required to
detach itself before the main thread terminates.

#ifndef __JNI_ENV_GUARD_H__

#define __JNI_ENV_GUARD_H__

#include <jni.h>

class JniEnvGuard {

public:

 explicit JniEnvGuard(JavaVM* vm, jint version = JNI_VERSION_1_6);
 ~JniEnvGuard();

 JNIEnv* operator->();

 JNIEnv const* operator->() const;

private:

 JavaVM *vm_;

 JNIEnv *env_;

 bool threadAttached_;

};

#endif /* __JNI_ENV_GUARD_H__ */

// Implementation

#include "JniEnvGuard.h"

#include <stdexcept>

JniEnvGuard::JniEnvGuard(JavaVM* vm, jint version) : vm_(vm), env_(NULL), threadAttached_(false) {
 jint jniResult = vm_->GetEnv(reinterpret_cast<void**>(&env_), version);

 if (jniResult == JNI_EDETACHED) { // Detached, attach

 jint rs = vm_->AttachCurrentThread(&env_, NULL);

 if (rs != JNI_OK) {

 throw std::runtime_error("Error attaching current thread to JNI VM");

 }

 threadAttached_ = true;

 } else if (jniResult != JNI_OK) {

 throw std::runtime_error("Error obtaining a reference to JNI environment");

 }

 if (env_ == NULL) {

 throw std::runtime_error("JNIEnv* invalid");

 }

}

JniEnvGuard::~JniEnvGuard() {

 if (threadAttached_) {

 vm_->DetachCurrentThread();

 }

}

JNIEnv* JniEnvGuard::operator->() {

 return env_;

}

JNIEnv const* JniEnvGuard::operator->() const {

 return env_;

}

Listing 13: The JniEnvGuard class.

The JniEnvGuard class ensures that the JNIEnv pointer obtained through a JavaVM pointer is
attached to the current thread upon construction time and detached again when the object is destructed.
So instead of creating a JNIEnv handle manually by calling GetEnv() in the following implementation,

an object of type JniEnvGuard is created that automatically handles thread attachment and

detachment as required, i.e. the JniEnvGuard class implements the RAII-idiom for JNIEnv thread
attachment and detachment.

Finally, the implementation of the C++ AacEldEncoder is shown in Listings 14 and 15. The most

important method of the implementation is initJni(). In this method, the connection between the

Java AacEldEncoder implementation and the C++ implementation is set up. Firstly, the

AacEldEncoder Java class is looked up by a call to FindClass(). The argument to FindClass() is
a string containing the fully qualified class name used in Java. For the example application, the package
de.fraunhofer.iis.aac_eld_encdec contains the AacEldEncoder class, so the argument to

FindClass() becomes "de/fraunhofer/iis/aac_eld_encdec/AacEldEncoder".

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 17

#include <jni.h>

#include <android/log.h>

#include <stdlib.h>

#include "JniEnvGuard.h"

#include "AacEldEncoder.h"

class AacEldEncoder::AacEldEncImpl {

public:

 AacEldEncImpl(void *jvmHandle);

 ~AacEldEncImpl();

 bool configure(unsigned int sampleRate, unsigned int nChannels,

 unsigned int bitrate, std::vector<unsigned char>& asc);

 bool encode(std::vector<unsigned char>& inSamples, std::vector<unsigned char>& outAU);

 void close();

private:

 JavaVM* javavm;

 jclass aacEldEncoderClass;

 jobject aacEldEncoderInstance;
 jmethodID configureMethodId;

 jmethodID encodeMethodId;

 jmethodID closeMethodId;

 bool jniInitialized;

 bool initJni();

};

bool AacEldEncoder::AacEldEncImpl::initJni() {

 JniEnvGuard env(javavm);

 jclass encoderClass = env->FindClass("de/fraunhofer/iis/aac_eld_encdec/AacEldEncoder");

 if (encoderClass && !aacEldEncoderClass) // Store a global reference for this application
 aacEldEncoderClass = reinterpret_cast<jclass>(env->NewGlobalRef(encoderClass));

 if (!encoderClass) { // in case of an error, first check if

 if (aacEldEncoderClass) { // some thread got wild and we messed up the class loader stack
 encoderClass = aacEldEncoderClass; // try cached class if found before

 if(env->ExceptionCheck() == JNI_TRUE) { // and clear the pending exception that FindClass has already thrown

 env->ExceptionClear();

 }

 } else { // all bets are off - cannot find class
 jthrowable exc = env->ExceptionOccurred();

 if (exc) {

 env->ExceptionDescribe();

 env->ExceptionClear();

 }
 return false;

 }

 }

 jmethodID encoder_ctor = env->GetMethodID(encoderClass, "<init>", "()V");
 configureMethodId = env->GetMethodID(encoderClass, "configure", "(III)[B");

 encodeMethodId = env->GetMethodID(encoderClass, "encode", "([B)[B");

 closeMethodId = env->GetMethodID(encoderClass, "close", "()V");

 // It is an error if one of these is not found
 if (!encoder_ctor || !configureMethodId || !encodeMethodId || !closeMethodId) {

 return false;

 }

 // If all methods are found, create a new instance of the AacEldEncoder object
 jobject encoderObj = env->NewObject(encoderClass, encoder_ctor);

 if (!encoderObj) {

 return false;

 }

 // Finally create a new global reference (otherwise the

 // just created object will be garbage collected as soon

 // as the current JNI call returns to Java)

 aacEldEncoderInstance = env->NewGlobalRef(encoderObj);

 if (!aacEldEncoderInstance) {

 return false;

 }

 jniInitialized = true;

 return true;

}

Listing 14: Initialization of the AacEldEncoder C++ class.

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 18

AacEldEncoder::AacEldEncImpl::AacEldEncImpl(void *jvmHandle)

: javavm((JavaVM*)jvmHandle),

 aacEldEncoderClass(NULL),
 aacEldEncoderInstance(NULL),

 configureMethodId(NULL),

 encodeMethodId(NULL),

 closeMethodId(NULL),

 jniInitialized(false)
{}

AacEldEncoder::AacEldEncImpl::~AacEldEncImpl() {

 if (jniInitialized)

 close();
}

bool AacEldEncoder::AacEldEncImpl::configure(unsigned int sampleRate, unsigned int nChannels, unsigned int bitrate,

std::vector<unsigned char>& asc) {

 if (!jniInitialized)
 if (!initJni())

 return false;

 JniEnvGuard env(javavm);

 jbyteArray resBuf = (jbyteArray) env->CallObjectMethod(aacEldEncoderInstance,

 configureMethodId,

 sampleRate,

 nChannels,

 bitrate);

 if (!resBuf) {

 return false;

 }

 jsize len = env->GetArrayLength(resBuf);

 jbyte *buf = env->GetByteArrayElements(resBuf, 0);

 asc.clear();
 asc.resize(len);

 memcpy(&asc[0], buf, sizeof(unsigned char)*len);

 env->ReleaseByteArrayElements(resBuf, buf, 0);

 env->DeleteLocalRef(resBuf);

 return true;

}

bool AacEldEncoder::AacEldEncImpl::encode(std::vector<unsigned char>& inSamples, std::vector<unsigned char>& outAU) {

 JniEnvGuard env(javavm);

 jbyteArray inArray = env->NewByteArray(inSamples.size());

 jbyte *inBytes = env->GetByteArrayElements(inArray, 0);

 memcpy(inBytes, &inSamples[0], sizeof(unsigned char)*inSamples.size());

 env->ReleaseByteArrayElements(inArray, inBytes, 0);

 jbyteArray resBuf = (jbyteArray) env->CallObjectMethod(aacEldEncoderInstance, encodeMethodId, inArray);
 env->DeleteLocalRef(inArray);

 if (!resBuf)

 return false;

 jsize resLen = env->GetArrayLength(resBuf);

 jbyte *resByteBuf = env->GetByteArrayElements(resBuf, 0);

 outAU.clear();

 outAU.resize(resLen);

 memcpy(&outAU[0], resByteBuf, sizeof(unsigned char)*resLen);

 env->ReleaseByteArrayElements(resBuf, resByteBuf, 0);

 env->DeleteLocalRef(resBuf);

 return true;
}

void AacEldEncoder::AacEldEncImpl::close() {

 JniEnvGuard env(javavm);

 env->CallVoidMethod(aacEldEncoderInstance, closeMethodId);
 env->DeleteGlobalRef(aacEldEncoderInstance);

 aacEldEncoderInstance = NULL;

 jniInitialized = false;

}

	
Listing 15: Implementation of the AacEldEncoder C++ class.

Note, that when calling FindClass()for the first time in an application, it should be called from the
main thread. If it is not called from the main thread, the Android class loader might not be able to find
the class, even though it exists [12]. As a consequence, it is important to ensure that the encoder (and
decoder) is at least once created from the main thread of your application. If the class has been found, it
is stored in the member variable aacEncoderClass, ensuring that subsequent encoder objects can be
created also from different threads. After the class object has been found by JNI, the initialization method
tries to obtain handles to the class methods that need to be used for encoding: the class constructor,

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 19

configure(), encode() and close(). Therefore, the JNI function GetMethodID() is used and
care should be taken to provide the correct Java method signatures to the call (the command line utility
javap can be used to display Java class method signatures that should be used in JNI calls). Next, a new
object of type AacEldEncoder (Java) is created by a call to the JNI function NewObject(). If the
object creation is successful, a new global reference to the just created object is obtained and stored in
the member variable aacEldEncoderInstance. All subsequent object calls are then performed using
this object reference. Note that it is required to create a new global reference, because otherwise the Java
garbage collector would collect the newly created object.

After this initial setup has taken place, the individual object methods can simply be called from JNI using
the Call*Method() calls provided by the JNI API and wrapping the input and output data accordingly
as illustrated in Listing 15.

4 INTEROPBERABILITY TO IOS

Since iOS version 4.0, the AAC-ELD codec is also available on Apple's iOS platform [7]. The Android AAC-
ELD implementation is compatible with and interoperable to the implementation on iOS devices. Notably
the Android AAC-ELD decoder supports decoding of all audio streams created by the iOS AAC-ELD
encoder as long as the correct ASC is used for configuration.
However, the Java MediaCodec API of the Android 4.1 AAC-ELD encoder has still some limitations with
respect to the available AAC-ELD encoder configuration parameters (i.e. available keys in the
MediaFormat class). Therefore, audio streams that are encoded with AAC-ELD using Android devices
running version 4.1 of the Jelly Bean operating system may support only a limited set of all
configurations.

If the same codec configuration for sending and receiving between Android and iOS devices has to be
used, the following modes are recommended on Android 4.1 (besides others):

 AAC-ELD without SBR
- Sampling rate 22.05kHz
- Frame length 512
- Bitrate: 32.729 kbps and higher

 AAC-ELD without SBR
- Sampling rate 44.1 kHz
- Frame length 512
- Bitrate: 65.459 kbps and higher

The Java API on Android version 4.2 supports access to extended configuration settings, e.g. lower
bitrates, but not yet the activation of the Spectral Band Replication tool (SBR) and the selection of
different framesizes. It is expected that during the evolution of the MediaCodec API more encoder
configuration settings will become available (e.g. activation of SBR, framelength of 480, etc.) with future
Android operating system updates.

5 DEMO APPLICATION SOURCE CODE

The listings used during the text are extracted from a working application that performs real-time audio
I/O and coding with AAC-ELD on Android using the Java SDK and the Java Native Interface APIs. In order
to keep the text size appropriate, not every detail of the code could be discussed. However, the complete
source is available together with this document and can be downloaded from the same source. The
implementation should be simple enough to be understandable without excessive effort. After working
through the source code on paper and understanding the underlying concepts, it is recommended to
open the project and run it on an Android device. By changing the audio processing parameters (e.g. the

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 20

bitrate) a developer should soon feel familiar with the code and be prepared to start own projects using
AAC-ELD for audio communication.

The demo source package can be imported into an Eclipse workspace as an Android project for building
the sample application. The Android Native Development Tools package for Eclipse as well as the Android
NDK are required. Note that because the demo application requires the Android NDK, it currently cannot
be build using Android Studio. The application itself is just a bare bones demonstration of the concepts
that are presented in this paper and the program code is optimized for readability and instructional
purposes. Consequently, error checking and abstraction is greatly reduced in favor of understandability.
Additionally, most parameters that should be dynamic within a real world application are hardcoded and
assumed to be constant for the same purpose. Please refer to the README.txt file from the package for
further information about the demo project.

6 AUDIO COMMUNICATION ENGINE

As has been demonstrated in this paper, the Android operating system starting with version 4.1 provides
the basic components for implementing high-quality audio communication based on AAC-ELD. Especially
because of the native support in Android, using AAC-ELD for communication applications becomes very
attractive from a business and developer perspective. However, it should be clear that having a high-
quality audio codec in place is just the basic foundation of a full VoIP system. Referring to the introduction
and Fig.1, it becomes obvious that several other components have to be implemented and various other
problems are to be addressed. Besides echo control and IP/UDP/RTP packetization, this also includes the
handling of lost and delayed packets in the Jitter Buffer Management. With realistic network conditions, IP
packets may get lost or may undergo a variable delay. The VoIP system must react to this by implementing
error concealment and Time Scale Modification (TSM) for adapting the play out time during a call. These
operations are not supported by the Android API and need to be implemented on top of the provided
services. From this paper it should also become clear that the correct usage of the Android Java API could
become challenging when real-time constraints and multiple threads of processing come into play.
Therefore, the software development process of a fully enabled VoIP application can still be time
consuming and cumbersome.

As time-to-market is key for many companies and application developers, Fraunhofer IIS has developed
the Audio Communication Engine (ACE) and ported it to Android. The ACE provides the missing
components for building a VoIP application based on AAC-ELD and offers the complete functionality
through a higher-level API that is easy to use. As illustrated in Fig. 4, the ACE covers all components of the
main audio processing chain but leaves the user interface and session setup to the application developer.
Additionally, as a C++ library, the ACE allows for an easy integration of existing components and
facilitates cross-platform development of audio communication applications on a wide range of devices
and operating systems. For example, it can easily be combined with a SIP-client or other session setup
protocols to allow for maximum freedom in service offering.

For further information on the ACE, please visit the Fraunhofer IIS home page [8,9].

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 21

Figure 4: Scope and benefit of using the ACE for building a complete VoIP app on Android

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 22

References

[1] Markus Schnell et al., "Enhanced MPEG-4 Low Delay AAC - Low Bitrate High Quality

Communication," in Audio Engineering Society Convention, Vienna, 2007.
[2] Google Inc. (2012), Android 4.1 Compatibility Definition [Online].

http://source.android.com/compatibility/4.1/android-4.1-cdd.pdf
[3] Colin Perkins, RTP - Audio and Video for the Internet, 1st ed. Boston, MA: Addison-Wesley, 2003.
[4] Google Inc. (2013) Android Developer Website [Online]. http://developer.android.com/index.html

[5] Google Inc. (2013) Android Developer Website MediaFormat [Online].

http://developer.android.com/reference/android/media/MediaFormat.html

[6] Fraunhofer IIS. (2012) Application Bulletin - AAC Transport Formats. [Online].
http://www.iis.fraunhofer.de/content/dam/iis/en/dokumente/AMM/AAC_Transport_FormatsR1.0-
1.pdf

[7] Fraunhofer IIS. (2012) Application Bulletin - AAC-ELD based Audio Communication on iOS, A
Developers Guide. [Online].

 http://www.full-hd-voice.com/content/dam/fullhdvoice/documents/iOS-ACE-AP-v2.pdf
[8] Fraunhofer IIS. (2010, Jan.) Fraunhofer IIS Audio Communication Engine - Raising the Bar in

Communication Quality. [Online].
http://www.iis.fraunhofer.de/bf/amm/download/whitepapers/WP_Audio_Communication_Engine.pdf

[9] Fraunhofer IIS. (2010, Jan.) Fraunhofer IIS Audio Communication Engine [Online].
 http://www.iis.fraunhofer.de/en/bf/amm/produkte/kommunikation/ace/index.js
[10] Google Inc. (2013) Android Supported Media Formats [Online].
 http://developer.android.com/guide/appendix/media-formats.html
[11] Khronos Group. (2013) OpenSL ES [Online].
 http://www.khronos.org/opensles/
[12] Google Inc. (2013) Android JNI Tips [Online].
 http://developer.android.com/training/articles/perf-jni.html
[13] Google Inc. (2013) Android NDK [Online].
 http://developer.android.com/tools/sdk/ndk/index.html
[14] Oracle. (2011) Java Native Interface [Online].
 http://docs.oracle.com/javase/6/docs/technotes/guides/jni/

© Fraunhofer IIS, 2013 AAC-ELD based Audio Communication on Android 23

ABOUT FRAUNHOFER IIS

The Audio and Media Technologies division of Fraunhofer IIS has been an authority in its field for more
than 25 years, starting with the creation of mp3 and co-development of AAC formats. Today, there are
more than 10 billion licensed products worldwide with Fraunhofer’s media technologies, and over one
billion new products added every year. Besides the global successes mp3 and AAC, the Fraunhofer
technologies that improve consumers’ audio experiences include Cingo® (spatial VR audio), Symphoria®
(automotive 3D audio), xHE-AAC (adaptive streaming and digital radio), the 3GPP EVS VoLTE codec
(crystal clear telephone calls), and the interactive and immersive MPEG-H TV Audio System.

With the test plan for the Digital Cinema Initiative and the recognized software suite easyDCP, Fraunhofer
IIS significantly pushed the digitization of cinema. The most recent technological achievement for moving
pictures is Realception®, a tool for light-field data processing.

Fraunhofer IIS, based in Erlangen, Germany, is one of 69 divisions of Fraunhofer-Gesellschaft, Europe’s
largest application-oriented research organization.

For more information, contact amm-info@iis.fraunhofer.de, or visit www.iis.fraunhofer.de/amm.

INFORMATION IN THIS DOCUMENT IS PROVIDED 'AS IS' AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

INFORMATION IN THIS DOCUMENT IS OWNED AND COPYRIGHTED BY THE FRAUNHOFER-GESELLSCHAFT
AND MAY BE CHANGED AND/OR UPDATED AT ANY TIME WITHOUT FURTHER NOTICE. PERMISSION IS
HEREBY NOT GRANTED FOR RESALE OR COMMERCIAL USE OF THIS SERVICE, IN WHOLE OR IN PART,
NOR BY ITSELF OR INCORPORATED IN ANOTHER PRODUCT.

Copyright ©2013 Fraunhofer-Gesellschaft

