

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 1

ABSTRACT

This document is a developer’s guide for accessing the AAC-ELD codec included in iOS from third party
audio communication applications. It shows how developers can create their own innovative applications
and services using the same high quality codec as in FaceTime.

Source code examples are used to illustrate the required processing steps and Application Programming
Interface calls. The complete source code is available together with this paper and comprises a working
demo application, which reads audio frames from the microphone and plays them back at low delay after
encoding and subsequent decoding. The discussed iOS APIs include full-duplex audio Input/Output using
the Remote I/O AudioUnit and AAC-ELD encoding/decoding using the AudioConverter API. The
initialization of components and underlying concepts, such as the usage of callback functions and object
properties are discussed.

The scope of the example application is limited for simplicity and does not cover transmission over IP or
other advanced features such as error concealment or jitter buffer management. The integration of all
these components into a complete Voice over Internet Protocol application is a challenging task but can be
simplified through the Fraunhofer Audio Communication Engine, which is described briefly at the end of
the document.

APPLICATION BULLETIN

AAC-ELD based Audio Communication on iOS

A Developer’s Guide

 V2.3 - 08.08.2012

F R A U N H O F E R I N S T I T U T E F O R I N T E G R A T E D C I R C U I T S I I S

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 2

1 INTRODUCTION

With the introduction of FaceTime, Apple started a new era of Voice over IP (VoIP) communication. An
increasing number of people now use video conferencing on their iPhone, iPad, and Mac devices and
enjoy excellent audio and video quality while chatting with friends and family members. One of the
enabling components of FaceTime is the MPEG AAC Enhanced Low Delay (AAC-ELD) audio codec, which
provides high audio quality at low delay and low bit rates [1]. What makes this codec particularly
interesting for iOS developers is that it is accessible through the iOS Application Programming Interface
(API). Hence, besides FaceTime, other application can make use of this codec.

Using the AAC-ELD codec and real-time audio Input/Output (I/O) is not as straight forward as using other
APIs in iOS. This is mainly because the required functionality is accessible only by lower-level APIs.
Consequently, their use is not as convenient as using the very elegant and high-level Cocoa interfaces
which makes working with these APIs difficult at times. Moreover, the documentation describing the
low-level audio API is tailored towards experienced developers. For example, the code samples in the iOS
SDK targeting audio coding mainly cover simple audio file conversion for which additional convenience
functions exist within the API. Audio over IP on the other hand requires a frame-based processing in
order to achieve low delay. This application bulletin offers support for developers by collecting the
required information for frame-based audio processing, encoding and decoding in a single place and
explaining the underlying concepts of the Core Audio services that are provided by the iOS Software
Development Kit (SDK) [2]. An example application is used to illustrate the required processing steps and
API calls. The complete source code is available together with this document and allows building a
working application with real-time audio I/O and AAC-ELD encoding/decoding.

The basic components of a real time VoIP application are depicted in Fig. 1. The core parts of the
application are two processing chains. Firstly, there’s the recording, encoding and packing of the audio
data that should be transmitted. Simultaneously, unpacking, decoding and playback of received data
packets have to be executed. These processing chains are usually termed the sender and the receiver and
are duplicated in the local and remote client [3]. If hands-free operation is desired, an important part of
the sender is the Echo Control (EC), which is a pre-processing step before encoding. In the receiver, Jitter
Buffer Management (JBM) is an important component, which tries to compensate variations in network
delay through buffering while keeping the overall delay low. Finally, Session Setup, e.g. via the Extensible
Messaging and Presence Protocol (XMPP) or the Session Initiation Protocol (SIP), Graphical User Interface
(GUI) and other control functionalities are required for a complete system. Because this application
bulletin cannot cover all the above-mentioned components and their interaction, we will focus on a
simple subset for the main part of this paper in Section 2. In Section 3 we will return to some of the
more advanced features in VoIP and point to our SDK that can greatly reduce the development time for
VoIP applications employing AAC-ELD.

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 3

record ec encode pack

play decode unpackjbm

send

receive

control, session setup, gui

gui: graphical user interface
ec: echo control
jbm: jitter buffer management

spk

mic

p
cm ip

local client remote
client

record ec encode pack

play decode unpackjbm

send

receive

control, session setup, gui

gui: graphical user interface
ec: echo control
jbm: jitter buffer management

spk

mic

p
cm ip

local client remote
client

Figure 1: Basic components of a VoIP application

2 IMPLEMENTATION ON iOS

In the following sections we describe the interfaces of the iOS SDK that are required in order to
implement high-quality, low-latency audio recording, AAC-ELD encoding, AAC-ELD decoding and
playback on iOS based devices. It is assumed that the reader is already familiar with the basic concepts of
iOS application programming and the C or C++ programming language. Since the interfaces and APIs
that are presented are C-based, no knowledge of Objective-C will be required in order to understand the
code samples. Please note that the provided example is tuned for simplicity. Therefore, only a minimum
of error checking and abstraction is employed and thus the samples will not fulfill the requirements of
production quality code. For in-depth information about the iOS platform and its APIs, the reader is
referred to [4].

However, the code samples presented during the course of the text canbe used in a real world application.
Their scope is limited to audio I/O (recording, playback) and coding (encoding, decoding) as depicted in
Fig. 2. The resulting demo application can be used as starting point for a full-featured Audio-Over-IP
application or as a reference for extending existing projects.

record aac-eld
encode

play aac-eld
decode

spk

mic

pcm

record aac-eld
encode

play aac-eld
decode

spk

mic

pcm

Figure 2: Reduced scope of demo application

Fig. 3 shows the basic iOS components and API calls which are required to implement the demo
application. Each component is detailed below and the API calls are explained along with example code.
The purpose of Fig. 3 is to provide a high-level overview as guidance throughout the remaining text. The
important iOS components are illustrated on the left side of Fig. 3. and include the AudioUnit for real-time

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 4

audio I/O and the AudioConverter for encoding and decoding of AAC-ELD. A throughout description of
these components is given in Sections 2.2 through 2.5.

A critical concept to understand when using the Core Audio APIs is that of callback functions. These are
functions for which the API provides the prototype declaration, such that input- and output parameters as
well as return types are pre-defined. However, the developer has to provide the actual implementation for
the required functionality on behalf of the iOS component. After registering the callback function by
passing a function pointer to the iOS component, it will be called as needed by the component.

The main processing loop in the demo application is defined by the audioUnitRenderCallback()
function, which is called by the AudioUnit whenever new audio samples need to be provided for play-out.
When using full-duplex audio I/O, this callback is also the place where audio samples will be acquired from
the capture device. This enables simultaneous recording and playback of audio samples. Moreover, in the
sample application AAC-ELD encoding and decoding is performed within that function. As a consequence,
two additional callback functions are triggered by the AudioConverter for AAC-ELD encoding and
decoding. Those callback functions are called encodeProc() and decodeProc(). Their main purpose
is to set pointers in order to transfer data to and from the AAC-ELD encoder and decoder within the two
respective AudioConverter instances,. The details of this interaction will become more clear during the
discussion of the code examples further below.

spk

mic

iOS User Space

audioUnitRenderCallback()

EncodeAACELD()

encodeProc()

AudioUnitRender()

AudioConverterFillComplexBuffer()

AudioConverterFillComplexBuffer()

AudioConverter

AAC-ELD Enc

encodedAU

Remote IO
Audio Unit

AudioConverter

AAC-ELD Dec

DecodeAACELD()

decodeProc()

in1 out1

out0 in0

callback
iOS API call
audio data

spk

mic

iOS User Space

audioUnitRenderCallback()

EncodeAACELD()

encodeProc()

AudioUnitRender()

AudioConverterFillComplexBuffer()

AudioConverterFillComplexBuffer()

AudioConverter

AAC-ELD Enc

encodedAU

Remote IO
Audio Unit

AudioConverter

AAC-ELD Dec

DecodeAACELD()

decodeProc()

in1 out1

out0 in0

callback
iOS API call
audio data

callback
iOS API call
audio data

Figure 3: Outline of iOS components and signal flow in the demo application

2.1 AUDIO SESSION INITIALIZATION

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 5

Before the actual signal flow can become effective as illustrated in Fig. 3, the iOS components need to be
initialized correctly. In preparation for the following code examples, we define a few global variables in
Listing 1, which are used in order to increase the readability of the remaining code snippets. The meaning
of these variables will be discussed in the corresponding sections.

Listing 1: Global Variables

As can be seen from Listing 1, an input and an output AudioBuffer are needed. Moreover, the number of
input channels and the number of output channels are defined. Additionally, we assume a fixed frame
size, i.e. the number of individual audio samples per channel in one audio frame (or packet) being 512.
This applies for the whole course of the following discussion. Note that the types AACELDEncoder and
AACELDDecoder are user defined data types that encapsulate the required state variables and
configuration for the encoding and decoding process. Essentially, the required codec state consists of the
number of input and output channels, the frame size, the sampling rate and the codec bitrate. Individual
elements of these types, as well as the MagicCookie type will be discussed in Sections 2.4 and 2.5,
respectively.

The general behavior of audio-enabled iOS applications can be managed with the AudioSession API. Every
iOS application gets a singleton audio session upon launch time. By configuring the properties of the
audio session and activating it, the application communicates its desired audio use to the operating
system. Notably, the most important steps for an audio communication application are to configure the
associated audio session to support simultaneous audio input and output as well as installing callback
functions that react to interruption handling (e.g. when the application needs to terminate) and route
changes (e.g. when a headset is plugged in). Another essential configuration requirement is to set the
preferred hardware I/O buffer duration. While big buffers relax real time requirements, the buffers should
be set as small as possible for real-time audio communication applications in order to reduce the overall
I/O latency.

Lines 20 – 39 of Listing 2 show how to configure a corresponding audio session for an audio
communication iOS application. For this and the following examples, we use an audio sampling rate of
44.1kHz and a frame size of 512 (g_frameSize), i.e. our application is processing 512 audio samples per
channel at a time. Hence, the preferred I/O buffer time within the audio session should be 512 / 44100
seconds, corresponding to 11.6 milliseconds. Note, however, that setting the preferred hardware I/O
buffer duration is just a hint to the operating system and might be changed by the AudioUnit. In our
simple case, the AudioUnit is just able to fulfill the desired request but this does not need to be the case
with all configurations. As a consequence, any implementation should check the actual number of
samples received within the audio callback, especially if the implementation requires a specific number of
samples in order to work correctly. Moreover, during the rest of the examples we also assume a one-
channel input and a two-channel output. Though the integrated microphone can only produce mono
input, we discuss the case of stereo output to highlight this special capability of AAC-ELD. When the

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 6

internal microphone is used, the mono signal will be duplicated to the left and right stereo channel1. Note
that while in lines 21 and 31 of Listing 2 we provide an interruption listener as well as a route change
listener, their implementation is empty for the sake of simplicity. In a real world application, you would
provide an appropriate implementation reacting to events such as forced termination or plugging in a
headset.

The code example in Listing 2 also introduces the important concept of properties that is used throughout
the audio APIs in iOS. The objects within the audio frameworks are configured by setting their properties
accordingly. A property is essentially a key-value pair. The key is usually an enumeration constant defined
by the API, such as kAudioSessionProperty_AudioCategory, whereas the value is of a particular
data type appropriate for the properties‘ purposes, e.g. a void*, a Float32, an UInt32 and so on.
Detailed information on what value type a specific property expects can be found in the respective
property’s documentation. For the remainder of this paper, the keys and the value types should become
clear from the provided code examples. Having set-up the current audio session for the application, the
next step is to enable real time, low-latency audio input and output on the device.

1 This is true for iOS versions >= 4.3 only. In previous iOS versions, the missing channel is filled with zeros.

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 7

Listing 2: Initialization of the AudioUnit

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 8

2.2 LOW-LATENCY AND FULL-DUPLEX AUDIO I/O

When implementing a real time VoIP application, it is required to set up low-latency access to the audio
I/O hardware of the device. Furthermore, full-duplex, i.e. simultaneous recording and playback of audio, is
required. Within the iOS SDK, Apple provides this access to the hardware by the means of so called
AudioUnits [6]. AudioUnits are audio processing plug-ins that can be dynamically loaded and used by the
application. The major advantage of using AudioUnits over the more sophisticated higher-level APIs
provided by the SDK is that AudioUnits constitute the lowest programming layer of the iOS audio stack.
Thereby, they provide access to a real time priority thread associated with their render callback methods.
Thus, the software developer gains maximum responsiveness and a minimum processing delay, which is
essential for a high quality audio communication application. As a drawback, however, AudioUnits are
also more complicated to use and require a deeper understanding than the higher-level iOS audio APIs. In
the remainder of this section, only the AudioUnits designed for recording and playback will be discussed.

iOS provides three AudioUnits for audio I/O. The Remote I/O unit is the most commonly used I/O, as it
directly connects to the input and output of the audio hardware. Accordingly, the Remote I/O unit offers
low-latency access to the incoming and outgoing audio samples. As an add-on to the Remote I/O unit, the
Voice-Processing I/O unit is also available providing gain control and echo cancelation specifically for the
use in VoIP applications. The third output I/O unit is termed Generic Output, which is intended for offline
audio processing and not suited for real time audio I/O. For the purpose of this discussion, we will focus
on the Remote I/O unit.

The general workflow for audio processing using AudioUnits is as follows [6]:

1. Obtain a reference to the libraries that implement specific units
2. Instantiate an AudioUnit
3. Interconnect AudioUnits and/or attach render callback functions
4. Start the audio processing workflow

AudioUnits are components within the iOS audio framework. As such, a reference to the library that
implements a specific AudioUnit can be acquired by filling in the appropriate fields of an
AudioComponentDescription structure and querying the system for the component library by a call
to the API function AudioComponentFindNext(). As the name of the function suggests, there can be
more than one component for a single description. Once a reference to the audio component is found
and returned by the system, the audio unit is instantiated by calling AudioComponentInstanceNew().
This is illustrated in lines 50 - 51 of Listing 2. Here, the resulting reference to the audio unit is stored in a
global variable g_audioUnit of type AudioComponentInstance. In order to understand the
following code, it is necessary to describe the internal structure of I/O AudioUnits in more detail.

As shown in Figure 3, an I/O AudioUnit consists of two elements, Element 1 and Element 0. Each element
is divided into two scopes: the input scope and the output scope. For the I/O unit, the input scope of
Element 1 is directly connected to the recording hardware, whereas the output scope of Element 0 is
directly connected to the speakers. An application that will record audio samples, process them and play
them out is required to connect in between these two elements. Hence, the processing unit of the
application will be connected to the output scope of Element 1 and to the input scope of Element 0. In
terms of the AudioUnit API, the scopes are addressed by the use of the predefined constants
kAudioUnitScope_Input and kAudioUnitScope_Output. The elements, which are also termed
buses, are simply addressed by specifying the integer constants 0 and 1, respectively. These constants are
defined in the global variables g_inputBus and g_outputBus in Listing 1.

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 9

Element 0

Element 1

Output ScopeInput Scope

I/O Audio Unit

spk

mic

Element 0

Element 1

Output ScopeInput Scope

I/O Audio Unit

spkspk

micmic

Figure 3: Anatomy of the I/O Audio Unit.

When using a Remote I/O audio unit, audio input is disabled by default. It can be enabled by setting the
property kAudioOutputUnitProperty_EnableIO on the input scope of Element 1 (i.e. the input
bus) to 1 (i.e. true) with the function AudioUnitSetProperty(). This is shown in lines 54 – 60 of
Listing 2. As can be seen from the example, the property mechanism for audio units is exactly the same as
that for the audio session object. The next step is to set a render callback function to the output bus of
the input element in order to get access to the sample values that are recorded by the microphone.
Thereby, the user application code is connected to the I/O unit. The render callback function, which will be
discussed later, is attached to the I/O unit as a property setting. The relevant structure
AURenderCallbackStruct (Listing 2, Lines 63 – 68) consists of two elements: A pointer to a user
defined callback function and a pointer to user specified data that is passed to the callback function when
invoked by the audio unit.

The final step in configuring the I/O audio unit is to specify the expected sample format at the input and
to define the provided sample format for the respective output buses. This is done by setting the fields of
a structure of type AudioStreamBasicDescription. In the presented example, the input and the
output of the I/O unit will be linear PCM (kAudioFormatLinearPCM) with two channels and a sampling
rate of 44.1kHz. Lines 71 – 79 of Listing 2 show the single elements of the structure. For linear PCM data,
there is also a convenience macro defined in the API that will fill out the required fields of the structure.
This will be shown in Sections 2.4 and 2.5, when configuring the encoders and decoders for AAC-ELD.
The resulting stream descriptions are then attached to the input bus of the output scope and to the
output bus of the input scope of the audio unit. Note that there is no need to take care of the internal
sampling rates or stream formats that are used by the device hardware, as audio units are able to perform
dynamic resampling at their respective inputs and outputs.

2.3 AUDIO PROCESSING WITHIN THE RENDER CALLBACK

The render callback function is where the main processing of the VoIP application takes place. For each
audio frame the callback function is executed once. Recorded audio samples are received from the I/O
AudioUnit and at the same time the processed samples are passed back for play out. In between, the
recorded samples are encoded and subsequently decoded again. In a real-world VoIP application, the
encoded audio samples would be packetized into IP packets (typically using UDP/RTP) and sent over the
network. At the same time, incoming packets would be received and depacketized before decoding.
Packetization and IP transmission are omitted in the provided demo application, as the focus of this paper
is on audio I/O and coding.

As shown in Listing 3, the render callback function obtains the recorded input samples from the
AudioUnits input bus by a call to the AudioUnitRender() function. The acquired audio samples are
then copied into the global buffer g_inputBuffer of type AudioBuffer [2]. This audio buffer is
subsequently encoded using the AAC-ELD codec by a call to EncodeAACELD(). Both, this function and
the corresponding EncodedAudioBuffer structure are not part of the iOS API. Their implementation is
discussed in the next section. Subsequently, the just encoded buffer is decoded into a global output buffer
g_outputBuffer by a call to DecodeAACELD(). This is also a user-defined function and will be
discussed in Section 2.5. Finally, the decoded audio data is copied into the playback buffer (ioData). This

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 10

buffer is provided by the system upon performing a call to the render callback function [6]. In order to
start the audio unit processing workflow, the audio unit has to be initialized by a call to
AudioUnitInitialize(), followed by a call to AudioUnitStart().

Listing 3: The Audio Unit Render Callback

2.4 AAC-ELD ENCODING

CoreAudio provides a general means of audio format conversion through the AudioConverter Services API
[2]. The available conversions can be as simple as sampling rate and channel conversions as well as more
complex operations such as encoding and decoding PCM to various other formats. The AudioConverter
API uses AudioStreamBasicDescription structures in order to define the source and destination
audio formats. By setting a source and a destination format, a specific audio converter can be created by
calling AudioConverterNew(). For the demo application discussed in this paper, the individual state
variables that are required to initialize and use the AudioConverter are aggregated into a user-defined
structure named AACELDEncoder. Single elements of this structure are discussed during the course of
the text, for implementation details the reader is referred to the provided source code.

Since our intention is to encode from linear PCM (LPCM) to AAC-ELD, the source data format is set to
LPCM by using the convenience macro FillOutASBDForLPCM (Line 11, Listing 4) which sets the
appropriate AudioStreamBasicDescription structure fields for LPCM data. When encoding to
AAC-ELD, the destination data format must be set to kAudioFormatMPEG4AAC_ELD1. Since the user
generally does not know the internal format description that is used by the specific implementation of the
encoder, the system has to fill in the details of the structure. Therefore, only the format id, the sampling
rate and the number of channels have to be set for describing the desired encoder configuration in the

1 With the introduction of iOS 5.0, the Apple implementation also supports AAC-ELD with SBR [1] by specifying the constant

kAudioFormatMPEG4AAC_ELD_SBR.

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 11

AudioStreamBasicDescription for the destination format. Then the details can be filled in by a call
to AudioFormatGetProperty() with a property id of kAudioFormatProperty_FormatInfo
(Line 28, Listing 4). If the system finds an encoder that can handle the desired format, the resulting
AudioStreamBasicDescription structure can be used for the creation of an audio converter.

Once the audio converter has been created, the desired output bitrate can be set by a call to
AudioConverterSetProperty() as shown in line 45 – 51 of Listing 4. Typical bitrates for AAC-ELD
are 32-64 kbps for mono or 64-128 kbps for stereo (but may be lower as well as higher, if required). With
bitrates of 48 kbps and lower, it is highly recommended to use AAC-ELD with SBR enabled
(kAudioFormatMPEG4AAC_ELD_SBR). Subsequently, the maximum output packet size is queried in
lines 54ff. of Listing 4. This is required in order to allocate sufficient buffer memory for the generated
output packets. Finally, it is necessary to obtain the so-called encoder magic cookie for later decoding
purposes. Within the context of CoreAudio, the magic cookie is an opaque set of metadata that is
attached to an encoded or compressed block of audio data. The metadata contains information that is
required by the decoder in order to properly decode the data. The magic cookie associated with the
encoder object is obtained by firstly querying the audio converter for the cookie size. Then, sufficient
memory is allocated and the cookie data is retrieved by calling the function
AudioConverterGetProperty() and providing kAudioConverterCompressionMagicCookie
as the requested property type and the allocated buffer (Lines 76 – 83, Listing 4). For those familiar with
the terms and nomenclature of MPEG audio codecs, it is worth noting that the magic cookie contains the
Audio Specific Config (ASC), which would be also needed for correct signaling when using the Session
Description Protocol (SDP). In the demo code, the cookie data and its size have been aggregated into the
user-defined structure MagicCookie, which allows for passing the cookie data to the decoder easily.

The subsequent encoding of the PCM sample packets is straightforward as shown in Listing 5. The user
calls the EncodeAACELD function, providing the input audio buffer. First, a reference to the encoding
buffer is stored. Additionally, an array of type AudioStreamPacketDescription and an
AudioBufferList are required for audio data conversion. These are initialized with respect to the
input data and the expected output data. In the example code, one input packet (i.e. one frame
containing 512 LPCM samples per channel) is provided, and one encoded output packet is requested.
Thus, only one AudioStreamPacketDescription element is created and only one output
AudioBuffer is expected (Lines 52 and 55 – 59 of Listing 5, respectively). The output buffer is filled by
a call to AudioConverterFillComplexBuffer(). This starts the encoding process.

The encoder will request source data packets from the user by calling a user-defined callback function.
This callback function (encodeProc) is called whenever the encoder is ready to process an audio packet.
In the demo implementation, the maximum possible number of output packets is calculated (which is
always one in this case). The ioNumberDataPackets variable is set accordingly, if the number of
requested packets exceed the number of maximum packets. Subsequently, the provided ioData
parameter is adjusted to point to the input LPCM samples that were provided to the original encoder call.
Since all input LPCM samples are sent to the encoder upon the time of the call, the remaining number of
bytes to encode (stored in the encoder member variable bytesToEncode) is set to zero. However, it is
important to mention that the AudioConverter could call the encodeProc again. If this is the case
and the variable bytesToEncode is zero, a value other than noErr has to be returned in order to keep
the encoder state working. If bytesToEncode is zero and thus ioNumberDataPackets would be set
to zero and the return value is noErr this would signal to the encoder end of audio processing (see also
Apple Technical Q&A QA1317 [9]). The parameter outDataPacketDescription can be set to NULL,
as the PCM input packet format does not use a specific packet description [2].

When the call to AudioConverterFillComplexBuffer() returns, the encoded audio packet can be
found in the data member of the output buffer list, which was previously stored in the member variable
encoderBuffer of the AACELDEncoder structure. Additionally, the size of the encoded buffer is
stored in the mDataByteSize member of the outPacketDesc variable, which is generated by the
audio encoder. The variables are then passed on to the caller of the EncodeAACELD function by using
the user-defined structure EncodedAudioBuffer. After that, the encoding of the audio frame is

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 12

complete and the compressed bitstream data for one LPCM frame, also called Access Unit (AU), is to be
found in the data structure encodedAU.

Listing 4: Initialization of the AudioConverter for AAC-ELD Encoding

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 13

Listing 5: AAC-ELD Encoding using the AudioConverter API

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 14

2.5 AAC-ELD DECODING

Decoding of AAC-ELD access units using an AudioConverter works analogously to the encoding process.
This time, however, the source stream description’s format is kAudioFormatMPEG4AAC_ELD whereas
the destination stream format is LPCM. As shown in Listing 6, the initialization is straightforward. The
maximum output packet size could be fixed at 2048 bytes for the demo case (i.e. 2 bytes times 2 channels
times 512 samples) but is queried from the AudioConverter state for correctness of the implementation.
Finally, the magic cookie previously obtained from the encoder is provided to the decoder (as
kAudioConverterDecompressionMagicCookie) for initialization and correct operation.

Listing 6: Initialization of the AudioConverter for AAC-ELD Decoding

The decoding process, as shown in Listing 7, is very similar to the encoding process. However, since there
are always 512 samples processed at a time when encoding, there are also 512 single LPCM samples

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 15

being decoded from one AAC-ELD input packet. In order to have sufficient storage for the output samples
the allocation of an array of 512 elements of type AudioStreamPacketDescription is required for
holding the samples that will be generated by the AudioConverterFillComplexBuffer() function
call. This time the output buffer provided as an element of the AudioBufferList is directly associated
with the outSamples structure.

The major difference between the encoding and decoding callback functions is that in the callback that is
used for AAC-ELD to LPCM decoding, a packet description structure has to be provided for proper
processing of the input data. The packet description structure is necessary since multiple AAC-ELD AU’s of
different byte sizes could be provided as an input to the decoder via a single call. Setting the required
fields, especially the start offset and the packet size is straightforward for the demo case as only one input
packet containing the encoded data is present (Lines 28ff., Listing 7). Note that the name
outDataPacketDescription can be confusing, as what is actually described from the user
perspective is the input packet, but the variable is for output purposes. The naming was chosen to be
consistent with the iOS SDK examples.

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 16

Listing 7: AAC-ELD Decoding using the AudioConverter API

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 17

2.6 INTEROPERABILITY TO ANDROID 4.1

With OS version 4.1 (Jelly Bean) the AAC-ELD codec is also available in Android [10]. Integration of the
AAC-ELD codec is required by vendors in order to fulfill the Android 4.1 compatibility description [11].
The public Android AAC-ELD implementation is interoperable to the implementation on iOS devices and
the Android AAC-ELD decoder supports all modes available from the iOS encoder. However, the Java
MediaCodec API of the Android 4.1 AAC-ELD encoder has several limitations with respect to the
accessible AAC-ELD codec parameters. Therefore, audio streams that are encoded with AAC-ELD using
Android devices running version 4.1 of the Jelly Bean operating system may support only limited
configurations.

If the same codec configuration for sending and receiving between Android and iOS devices has to be
achieved, the following modes are recommended (besides others):

 AAC-ELD without SBR (kAudioFormatMPEG4AAC_ELD)
- Sampling rate 22.05kHz
- Frame length 512
- Bitrate: 32.729 kbps and higher

 AAC-ELD without SBR (kAudioFormatMPEG4AAC_ELD)
- Sampling rate 44.1 kHz
- Frame length 512
- Bitrate: 65.459 kbps and higher

2.7 DEMO APPLICATION SOURCE CODE

The Listings 1 - 7 are provided for the explanation of the concepts of iOS CoreAudio with specific source
code examples at hand. They are extracted from a working application that performs real time audio I/O
and coding with AAC-ELD. In order to keep the text size appropriate, not every detail of the code can be
discussed. However, the complete source is available with this paper and can be downloaded from the
same source. The implementation should be simple enough to be understandable without excessive effort.
After working through the source code on paper and understanding the underlying concepts, it is
recommended to open the project and run it on an iOS device. By changing the parameters (e.g. the
bitrate or from stereo to mono operation) a developer should soon feel familiar with the code and be
prepared to start own projects using AAC-ELD for audio communication.

The demo source package contains a ready to use Xcode 4.3 project file for building the sample
application. The application itself is just a bare bones demonstration of the concepts that are presented in
this paper and the program code is optimized for readability and instructional purposes. Consequently,
error checking and abstraction is greatly reduced in favor of understandability. Additionally, most
parameters that should be dynamic within a real world application are hardcoded and assumed to be
constant for the same purpose. Please refer to the README.txt file from the package for further
information about the demo project.

3 AUDIO COMMUNICATION ENGINE

As has been demonstrated in this paper, iOS provides the basic components for implementing high-quality
audio communication based on AAC-ELD. Especially because of the native support in iOS, using AAC-ELD
for communication applications becomes very attractive from a business and developer perspective.
However, it should be clear that having a high-quality audio codec in place is just the basic foundation of
a full VoIP system. Referring to the introduction and Fig.1, it becomes obvious that several other
components have to be implemented and various other problems are to be addressed. Besides echo
control and IP/UDP/RTP packetization, this also includes the handling of lost and delayed packets in the
Jitter Buffer Management. With realistic network conditions, IP packets may get lost or may undergo a

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 18

variable delay. The VoIP system must react to this by implementing error concealment and Time Scale
Modification (TSM) for adapting the play out time during a call. These operations are not supported by the
native iOS API and need to be implemented on top of the provided services.

From this paper it should also become clear that the correct usage of the iOS API can become challenging
when real time constraints require the usage of lower-level functions and services. Correct initialization of
AudioUnits and AudioConverters together with callback functions requires a certain expertise in system
development and MPEG audio coding. Though the API usage can be worked out with sufficient patience
(and with the help of developer guides such as this one), the software development process can still be
time consuming and cumbersome. This is all the more true when multi-threading becomes necessary in
order to handle real time issues on the audio interface as well as on the network interface. In summary,
the task of integrating all the required components using lower-level APIs can be demanding even if they
are readily available.

For companies and application developers for whom time to market is key, Fraunhofer IIS has therefore
developed the Audio Communication Engine (ACE) and ported it to iOS. The ACE provides the missing
components for building a VoIP application based on AAC-ELD and offers the complete functionality
through a higher-level API that is easy to use. As illustrated in Fig. 4, the ACE covers all components of the
main audio processing chain but leaves the user interface and session setup to the application developer.
For example, it can easily be combined with a SIP-client or other session setup protocols to allow for
maximum freedom in service offering. Though the ACE uses the same high quality audio codec as
FaceTime it does not assure interoperability.

For further information on the ACE, please visit the Fraunhofer IIS home page [7,8].

record ec encode pack

play decode unpackjbm

send

receive

communication app

spk

mic ip

scope of ACE

low-level API (hard to use)

high-level API (easy to use)

iOS component

ACE component

app code (by customer)

record ec encode pack

play decode unpackjbm

send

receive

communication app

spk

mic ip

scope of ACE

low-level API (hard to use)

high-level API (easy to use)

iOS component

ACE component

app code (by customer)

Figure 4: Scope and benefit of using the ACE for building a complete VoIP app on iOS

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 19

REFERENCES

[1] Markus Schnell et al., "Enhanced MPEG-4 Low Delay AAC - Low Bitrate High Quality
Communication," in Audio Engineering Society Convention, Vienna, 2007.

[2] Apple Inc. (2008, Nov.) Core Audio Overview. [Online].
http://developer.apple.com/library/ios/#documentation/MusicAudio/Conceptual/CoreAudioOverview/I
ntroduction/Introduction.html#//apple_ref/doc/uid/TP40003577

[3] Colin Perkins, RTP - Audio and Video for the Internet, 1st ed. Boston, MA: Addison-Wesley, 2003.
[4] Apple Inc. (2011, July) iOS Dev Center. [Online].

http://developer.apple.com/library/ios/navigation/index.html
[5] Apple Inc. (2010, Nov.) Audio Session Programming Guide. [Online].

http://developer.apple.com/library/ios/#documentation/Audio/Conceptual/AudioSessionProgramming
Guide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40007875

[6] Apple Inc. (2010, Sep.) Audio Unit Hosting Guide. [Online].
http://developer.apple.com/library/ios/#documentation/MusicAudio/Conceptual/AudioUnitHostingGui
de_iOS/Introduction/Introduction.html#//apple_ref/doc/uid/TP40009492

[7] Fraunhofer IIS. (2010, Jan.) Fraunhofer IIS Audio Communication Engine - Raising the Bar in
Communication Quality. [Online].
http://www.iis.fraunhofer.de/bf/amm/download/whitepapers/WP_Audio_Communication_Engine.pdf

[8] Fraunhofer IIS. (2010, Jan.) Fraunhofer IIS Audio Communication Engine [Online].
 http://www.iis.fraunhofer.de/en/bf/amm/produkte/kommunikation/ace/index.js
[9] Apple Inc. (2011, Jul.) Apple Technical Q&A QA1317 [Online].
 http://developer.apple.com/library/mac/#qa/qa1317/_index.html#//apple_ref/doc/uid/DTS10002349

[10] Google Inc. (2012) Android Developer Website [Online]. http://developer.android.com/index.html

[11] Google Inc. (2012), Android 4.1 Compatibility Definition [Online].
http://source.android.com/compatibility/4.1/android-4.1-cdd.pdf

© Fraunhofer IIS, 2012 AAC-ELD based Audio Communication on iOS 20

ABOUT FRAUNHOFER IIS

The Audio and Media Technologies division of Fraunhofer IIS has been an authority in its field for more
than 25 years, starting with the creation of mp3 and co-development of AAC formats. Today, there are
more than 10 billion licensed products worldwide with Fraunhofer’s media technologies, and over one
billion new products added every year. Besides the global successes mp3 and AAC, the Fraunhofer
technologies that improve consumers’ audio experiences include Cingo® (spatial VR audio), Symphoria®
(automotive 3D audio), xHE-AAC (adaptive streaming and digital radio), the 3GPP EVS VoLTE codec
(crystal clear telephone calls), and the interactive and immersive MPEG-H TV Audio System.

With the test plan for the Digital Cinema Initiative and the recognized software suite easyDCP,
Fraunhofer IIS significantly pushed the digitization of cinema. The most recent technological achievement
for moving pictures is Realception®, a tool for light-field data processing.

Fraunhofer IIS, based in Erlangen, Germany, is one of 69 divisions of Fraunhofer-Gesellschaft, Europe’s
largest application-oriented research organization.

For more information, contact amm-info@iis.fraunhofer.de, or visit www.iis.fraunhofer.de/amm.

INFORMATION IN THIS DOCUMENT IS PROVIDED 'AS IS' AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

INFORMATION IN THIS DOCUMENT IS OWNED AND COPYRIGHTED BY THE FRAUNHOFER-GESELLSCHAFT
AND MAY BE CHANGED AND/OR UPDATED AT ANY TIME WITHOUT FURTHER NOTICE. PERMISSION IS
HEREBY NOT GRANTED FOR RESALE OR COMMERCIAL USE OF THIS SERVICE, IN WHOLE OR IN PART,
NOR BY ITSELF OR INCORPORATED IN ANOTHER PRODUCT.

Copyright ©2012 Fraunhofer-Gesellschaft

