Features and Applications of the Adaptable Flexiband USB3.0 Front-end

ION GNSS+ 2014
September 8-12, 2014, Tampa Convention Center, Florida

Session A6: Simulation and Testing

Alexander Rügamer, Frank Förster, Manuel Stahl, Günter Rohmer
alexander.ruegamer@iis.fraunhofer.de
Fraunhofer IIS, Nuremberg, Germany
Contents

- Introduction
- Flexiband Hardware and Software
- Project Examples
 - Recording with Flexible Configurations
 - Interference Monitoring at German Reference Station
 - Interference Monitoring at Airport Graz, Austria
 - Array Post-Processing
- Conclusion
Introduction
Motivation and Applications for a USB Front-end

- Even a software receiver needs some hardware!
 - A front-end is required
 - USB is the most common standard PC interface

- Wide field of applications:
 - Get collection of real-world events to have controlled and reproducible data
 - Interference monitoring and detection
 - Array processing: beamforming / null-steering
 - Reflectometry applications
 - Multipath monitoring
 - Antenna comparisons
Introduction
Fraunhofer USB Front-ends

- L125 Triband USB Front-end (2006)
 - GPS L1/L2/L5
 - Two USB 2.0 data streams
 - Powered over USB

- RTKIII USB Front-end (2010)
 - Lower band: 1145-1310 MHz
 - Upper band: 1545-1630 MHz
 - 2x 410 MSPS ADCs
 - Flexible signal conditioning using an FPGA
 - Three USB 2.0 data streams
Introduction
Fraunhofer USB Front-ends

- "Flexiband" (2012)
- ION GNSS 2012
- Features
 - Portable
 - USB 3.0, USB2.0
 - Powered via USB
 - Futureproof (support all GNSS signals)
 - Flexibility for the user
 - Synchronization between different units
 - Multi antenna support
 - User friendly control GUI and API

Introduction

Fraunhofer Flexiband ⇄ TeleOrbit GTEC RFFE

- Since 2012, distributed via TeleOrbit
- ION GNSS+ 2014
 - At the booth of NavXperience
 - Flexiband together with Fraunhofer’s 3G+C Antenna
Flexiband Hardware
Overview

- System architecture comprises four blocks:
 - RF modules
 - Baseband Unit
 - Interface Unit
 - Housing
- Integration
 - 188 x 125 x 50 mm3
 - 0.8 kg weight
 - USB powered
 - Perfectly suited for mobile recording campaigns
Flexiband Hardware
RF Modules and Base Unit

- Carries up to 3 RF modules
 - 80 MHz RF bandwidth
 - Different filter types available
- Three Dual-Channel ADCs
 - Up to 80 Msps@8 bit I/Q
 - Coherent sampling
- FPGA
 - Digital filtering, mixing, multiplexing
 - Synchronization between different units
 - Embedding an error detection protocol
 - 67 GPIOs to e.g. embed digital sensor data in received raw GNSS data stream
- Clock generation and distribution unit
 - Onboard TCXO, External clock
Flexiband Hardware
USB3.0 Interface, Parallel Port

- USB 2.0 discontinued
- USB 3.0
 - Cypress EZ-USB FX3 controller
 - SuperSpeed USB3.0 – 5 Gbits/s
 - Power supply via 1x USB 3.0
 - Possibility to upgrade USB controller, microcontroller and FPGA firmware

- Parallel port interface
 - 24 bit data, 1 clk
 - LVCMOS 3.3V

Figure 2: Honda connector layout (commonly used for SCSI-bus systems)
Flexiband Software Architecture

- **Flexiband software components**
 - USB-driver
 - Application programming interface (API)
 - Visualization and recording software (Qt) ➔ **FlexibandGUI**
 - Console Version ➔ **FlexibandCLI**
 - Available for Windows and Linux
Flexiband Software
Flexiband GUI – Recording tab

- Manual / Automatic Gain Control (AGC)
- Error visualization
- Recording modes
 - Original samples
 - 8 bits/sample
 - Matlab
- Recording methods
 - Direct recording
 - RAM buffered
 - Round robing (infinite recording time, overwrites oldes files)
Flexiband Software
Flexiband GUI – Analyze tab

- Manual / Automatic Gain Control (AGC)
- Error visualization
- Complex Spectrum visualization of selected band
 - Identify e.g. CW-interference
- ADC histogram view
 - Check antenna and gain settings
Flexiband Software

Flexiband GUI – Hardware Information/Configuration

- "Expert control"
- Board revisions
- Status of Firmware
 - USB
 - Microcontroller
 - FGPA
- Settings of RFICs
 - Analog bandwidth
 - Analog local oscillator
- Compensation of ADC DC-offset
Flexiband Software

Flexiband CLI

- All configuration parameters are stored in config.ini file
- Usage:
 FrontendCLI [-i INI_FILE] [--help|-h]
- Default ini-file:

Advantages
- No user interaction to configure/start recording necessary
- Suited for automatic recordings e.g. from triggered events
Project Examples
Recording with Flexible Configurations

- Once the analog front-end hardware is chosen the digital signal conditioning on the FPGA can be used to realize flexible settings
- FPGA development kit for experienced users
 - Generate own bit-files for FPGA to
 - Configurable, complex FIR filter
 - Sampling rate decimation (80MSPS / n with configurable n)
 - Configurable digital mixer for IF setting
- Different FPGA configurations
 - Changing the signal selection and conditioning „on-the-fly“
 - From a single band to a triple band with one mouse click
Project Examples

Recording with Flexible Configurations

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Bandwidth [MHz]</th>
<th>Center frequency [MHz]</th>
<th>Intermediate frequency [MHz]</th>
<th>Sampling rate [MHz]</th>
<th>Sample bit width</th>
<th>USB data rate [MBit/s]</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-band frontend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.1a</td>
<td>18</td>
<td>L1/E1 (Galileo)</td>
<td>L5/E5/B2</td>
<td>1.192,500</td>
<td>2x4 (complex)</td>
<td>L5/E5a: -16,050</td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.1b</td>
<td>18</td>
<td>L1/E1bc</td>
<td>L5/E5/B2</td>
<td>1.192,500</td>
<td>2x2 (complex)</td>
<td>G1: 17,000</td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.1c</td>
<td>18</td>
<td>L5/E5/B2</td>
<td>L1/E1bc</td>
<td>1.575,420</td>
<td>2x4 (complex)</td>
<td>L1: -11,58</td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.1d</td>
<td>60</td>
<td>L1/E1abc/B1</td>
<td>L5/E5/B2</td>
<td>1.191,795</td>
<td>2x8 (complex)</td>
<td>G1: 15,000</td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.2a</td>
<td>20</td>
<td>L2/L2C</td>
<td></td>
<td></td>
<td>2x8 (complex)</td>
<td></td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.2b</td>
<td>20</td>
<td>G2</td>
<td></td>
<td></td>
<td>2x4 (complex)</td>
<td></td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.2c</td>
<td>18</td>
<td>G3</td>
<td></td>
<td></td>
<td>2x4 (complex)</td>
<td></td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.3a</td>
<td>38</td>
<td>E5b/B2</td>
<td></td>
<td></td>
<td>2x4 (complex)</td>
<td></td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.3b</td>
<td>38</td>
<td>E5b/B2</td>
<td></td>
<td></td>
<td>2x4 (complex)</td>
<td></td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.3c</td>
<td>38</td>
<td>E6abc/B3</td>
<td></td>
<td></td>
<td>2x4 (complex)</td>
<td></td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.3d</td>
<td>38</td>
<td>E6abc/B3</td>
<td></td>
<td></td>
<td>2x4 (complex)</td>
<td></td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.3e</td>
<td>38</td>
<td>E6abc/B3</td>
<td></td>
<td></td>
<td>2x4 (complex)</td>
<td></td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.4a</td>
<td>18</td>
<td>L1/E1abc/B1</td>
<td></td>
<td></td>
<td>2x4 (complex)</td>
<td></td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.4b</td>
<td>18</td>
<td>L1/E1abc/B1</td>
<td></td>
<td></td>
<td>2x4 (complex)</td>
<td></td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.4c</td>
<td>18</td>
<td>L1/E1abc/B1</td>
<td></td>
<td></td>
<td>2x4 (complex)</td>
<td></td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.5a</td>
<td>18</td>
<td>L1/E1abc/B1</td>
<td></td>
<td></td>
<td>2x4 (complex)</td>
<td></td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.5b</td>
<td>18</td>
<td>L1/E1abc/B1</td>
<td></td>
<td></td>
<td>2x4 (complex)</td>
<td></td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.6a</td>
<td>18</td>
<td>L1/E1abc/B1</td>
<td></td>
<td></td>
<td>2x4 (complex)</td>
<td></td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.6b</td>
<td>18</td>
<td>L1/E1abc/B1</td>
<td></td>
<td></td>
<td>2x4 (complex)</td>
<td></td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.7a</td>
<td>18</td>
<td>L1/E1abc/B1</td>
<td></td>
<td></td>
<td>2x4 (complex)</td>
<td></td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.7b</td>
<td>18</td>
<td>L1/E1abc/B1</td>
<td></td>
<td></td>
<td>2x4 (complex)</td>
<td></td>
<td>Monitoring</td>
</tr>
<tr>
<td>I.8a</td>
<td>18</td>
<td>L1/E1abc/B1</td>
<td></td>
<td></td>
<td>2x4 (complex)</td>
<td></td>
<td>Monitoring</td>
</tr>
</tbody>
</table>

From single-band to triple-band
- From 320 to 1280 Mbit/s [40 to 160 Mbyte/s]

Over 43 defined configurations available
- Customized configurations available, too

© Fraunhofer IIS
Project Examples
Recording with Flexible Configurations

- Select Configuration FPGA bit-File
- From a triple band III-b:
 - L1 20Msps@4bit I/Q
 - L2 20Msps@4bit I/Q
 - L5 40Msps@4bit I/Q
- With overall 640 Mbit/s (80 Mbyte/s)
Project Examples
Recording with Flexible Configurations

- To a new single band configuration I-1c:
 - L1 20Msps@8bit I/Q
 - With overall 320 Mbit/s (40 Mbyte/s)
Project Examples
Recording with Flexible Configurations

- Or to an extended triple band configuration III-4b:
 - E1 40Msp@4bit I/Q
 - E6 40Msp@4bit I/Q
 - E5 80Msp@4bit I/Q
- With overall 1280 Mbit/s (160 Mbyte/s)
Project Examples
Interference Monitoring at German Reference Station

GPS L1 C/A code

GPS L2P code

GPS L1 C/A carrier

GPS L2P carrier
Project Examples
Interference Monitoring at German Reference Station

- HAM Radio FM-Relais, 1242.650 MHz with approx. 9 Watt output power
- Even a power reduction to 300 mW is clearly visible (not shown here)
- Flexiband with antenna splitter at reference station
Project Examples
Interference Monitoring at German Reference Station

- HAM Radio FM-Relais, 1242.650 MHz with approx. 9 Watt output power
- Even a power reduction to 300 mW is clearly visible (not shown here)
- Flexiband with antenna splitter at reference station

Relative to L2 freq. of 1227.6 MHz

Relative to L2 freq. of 1227.6 MHz
Project Examples
Interference Monitoring at German Reference Station

NAVSTAR-GPS
- L5: BPSK(10) 1176.45 MHz
- M-Code BOC(10,5) 1217.60 MHz
- L2: PPS BPSK(10) 1575.42 MHz
- L1 C-I BOC(1,1) 1575.42 MHz
- L1 PPS BPSK(10) 1575.42 MHz
- L1 M-Code BOC(10,5) 1575.42 MHz
- L1 E5a BPSK(10) 1176.45 MHz
- L1 E5b BPSK(10) 1207.14 MHz
- E5 ALTBOC(15,10) 1191.795 MHz

GLONASS
- L3C: BPSK(10) 1202.025 MHz
- L2 C BPSK(0.511) 1598.0625 MHz
- L1 SPS BPSK(1) 1575.42 MHz
- L1 C-G TMBOC(6,1,4/33) 1598.0625 MHz
- L1 E6b BPSK(5) 1251.5875 MHz
- L1 E6c BPSK(5.11) 1242.9375 MHz

Galileo
- E5a - BPSK(10) 1176.45 MHz
- E5b BPSK(10) 1207.14 MHz
- E5 ARBOC(15,10) 1191.795 MHz
- E11 CBOC(6,1,1/11) 1575.42 MHz
- E11 E11b CBOC(6,1,4/33) 1609.3125 MHz

L1/E1 Band: ARNS and RNSS
- L2/E6 Band: RNSS only
- L5/E5 Band: ARNS and RNSS

© Fraunhofer IIS
Project Examples
Interference Monitoring at Airport Graz, Austria

- GNSS Airport Interference Monitoring System (GAIMS)* using the Flexiband

- 2014-08-19 – 11:18 – Graz – Vicinity of Airport Graz Thalerhof

- Jammer at E1/L1 center frequency

* Provided by TeleConsult Austria GmbH

P. Berglez and S. Hinteregger
Several Flexiband units can be synchronized

Sharing the same reference clock (internal one or external)

Synchronization link necessary
 - Wired OR-connection: all units stay in reset till recording is triggered on all units
 - Used for asynchronous FPGA reset (and its counter values)
 - Preamble and counters guarantee data sync
Project Examples
Mobile Array Recording Platform

- Recording of the array antenna elements for offline data analysis and beamforming / nullsteering
- With coupling two Flexiband units up to 6 antenna inputs possible

Advantages
- Not external power supply necessary (power via USB)
- On-field selection of different recording configurations, e.g.
 - 6x L1/E1, 18 MHz BW, 20 MSPS I/Q, 8 bit = 960 Mbit/s per unit
 - 6x L1/E1, 8 MHz BW, 10 MSPS I/Q, 8 bit = 480 Mbit/s per unit
Project Examples

Mobile Array Recording Platform

6x L1 Front-end input Signals
Project Examples
Mobile Array Recording Platform

Power Minimisation Technique (Minimum Variance Beamforming)

Blue: one input signal with interference
Red: output signal after MMSE
Conclusion

- Flexiband provides a future proof, flexible, portable and user friendly GNSS recording solution
 - Powerful Flexiband recording software
 - USB 3.0 is current baseline interface, Parallel port, USB2.0 also available
 - Powered via USB → perfectly suited for mobile recording campaigns
 - User changeable sampling rate, resolution and IF with different FPGA configurations
 - Synchronization of different units
 - Multi antenna support
- Digital replay solution planned for 2015
- User feedback, new feature suggestions, ideas welcome!
Questions?
alexander.ruegamer@iis.fraunhofer.de
Backup

Flexiband GUI – Script tab

- Scripting language ECMAScript
- Similar to JavaScript
- User can easily implement his own functions
- E.g. user defined automatic gain control (AGC) could implemented here
Backup

Flexiband technical parameters

<table>
<thead>
<tr>
<th>Feature</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (lengthwidthheight) [mm]</td>
<td>18812550</td>
</tr>
<tr>
<td>Power supply</td>
<td>5V / 900 mA via 1x USB 3.0</td>
</tr>
<tr>
<td>Max. RF input power</td>
<td>0 dBm</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0-55°</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>0-95 %</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-55° to 125°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Band</th>
<th>Nominal Centre Frequency [MHz]</th>
<th>Digital IF [MHz]</th>
<th>RF-Band-width [MHz]</th>
<th>Comple x signal</th>
<th>IF spectrum orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1/E1</td>
<td>1,575.420</td>
<td>0</td>
<td>up to 60</td>
<td>Yes</td>
<td>non flipped</td>
</tr>
<tr>
<td>L2/L2C</td>
<td>1,227.600</td>
<td>0</td>
<td>up to 50</td>
<td>Yes</td>
<td>non flipped</td>
</tr>
<tr>
<td>E6/B3</td>
<td>1,278.750</td>
<td>0</td>
<td>up to 50</td>
<td>Yes</td>
<td>non flipped</td>
</tr>
<tr>
<td>L5/E5</td>
<td>1,176.450</td>
<td>0</td>
<td>up to 68</td>
<td>Yes</td>
<td>non flipped</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Label</th>
<th>Con.-Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna</td>
<td>SMA</td>
<td>antenna connector (1 to 3 possible)</td>
</tr>
<tr>
<td>10 MHz in</td>
<td>SMB</td>
<td>input for an external reference clock, signal</td>
</tr>
<tr>
<td>10 MHz out</td>
<td>SMB</td>
<td>sinusoidal output of the internal 10MHz reference clock</td>
</tr>
<tr>
<td>USB</td>
<td>USB 3.0 Micro-B</td>
<td>data interface to the PC and power supply</td>
</tr>
<tr>
<td>Digital output</td>
<td>Honda E68-LFD</td>
<td>optional parallel output of the data stream</td>
</tr>
<tr>
<td>Sync</td>
<td>SMB</td>
<td>optional connector for synchronization of two front ends</td>
</tr>
</tbody>
</table>
Backup
Multiplexer Example for different triple band config

- **III-1a**: L1 20MSPS@2bit I/Q; L2 20MSPS@2bit I/Q; L5 20MSPS@4bit I/Q
- **III-1b**: L1 20MSPS@4bit I/Q; L2 20MSPS@4bit I/Q; L5 40MSPS@4bit I/Q
- **III-6**: L1 20MSPS@4bit I/Q; L5 20MSPS@4bit I/Q; E5b 20MSPS@4bit I/Q
- **I-1b**: L1 20MSPS@2bit I/Q; L2 20MSPS@2bit I/Q; L5 40MSPS@4bit I/Q
- **III-4a**: L1 20MSPS@2bit I/Q; L2 20MSPS@2bit I/Q; L5 40MSPS@4bit I/Q

| Word | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ...
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>...</td>
</tr>
<tr>
<td>Bit15</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>

PREAMBLE	**COUNTER**	**DATA**
0x55 | 0xAA | 0x00000000 - 0xFFFFFFFF |
0 | 1 | 2 | 3 | ...

---|---|---|
DATA	**CRC**
0x00000000 - 0xFFFFFFFF | 0xDE 0xAD 0xBE 0xEF |
0 | 1 | 2 | 3 | ...

---|---|---|
CRC	**CRC**
0xDE 0xAD 0xBE 0xEF | 0x0E 0x0D 0x0C 0x0B |
0 | 1 | 2 | 3 | ...