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ABSTRACT:

Defining or estimating camera poses and attributes is a vital part of computer graphics and computer vision. These areas encompass
a vast amount of sub-fields like virtual reality, photogrammetry, computer generated imagery and many more. It is desirable to share
this camera data between applications of these different areas to leverage their strengths in a workflow. However, a great amount of
formats and conventions make it difficult to transport camera parameters from one software package to another. This paper presents
an easy to use python library camorph to convert different formats into each other which enables the usage of a multi-software
workflow for the best possible results and facilitates the comparison of different methods.

1. INTRODUCTION

Representations of virtual cameras are exceedingly important
for many tasks in the fields of computer graphics and vis-
ion. Intrinsic camera parameters describe properties like focal
length and lens distortion inherent to the camera itself (Yan et
al., 2016), while extrinsic parameters describe the orientation
and translation of the camera (Zhang, 2000). Many different
specialized software applications like COLMAP (Schönberger,
2020), Unity (Unity Technologies, 2022), Reality Capture (Epic
Games, Inc., 2010) and Blender (Blender Foundation, 2022) ex-
ist for specialized tasks. All of these different applications have
varying needs for data structures and conventions. This leads
to distinct formats which can be challenging to handle. In an
environment where multiple software packages and file formats
from different fields of application are used for research and/or
development to leverage their respective strengths in a work-
flow, this can lead to confusion and frustration. For example,
photogrammetry tools like COLMAP and Reality Capture can
be used to estimate camera parameters and generate a virtual
representation with a textured 3D model from pictures. Sub-
sequently, these parameters could be used in a different spe-
cialized software to refine results for certain tasks like mesh
generation, mesh refinement, texturing, rendering and more.
Modern neural radiance fields (NeRF) (Mildenhall et al., 2020)
like TensoRF (Chen et al., 2022) and Instant-NGP (Müller et
al., 2022) typically start from already estimated or known cam-
era poses. While there are utility scripts that convert popular
calibration formats to a readable json format for these NeRF-
like approaches, this is usually limited to one source format.
This prevents the user from using different calibration tools,
or cross-checking the quality of the image alignment in other
applications where this is more convenient. To render a syn-
thetic camera pose trace as typically done in MPEG standard-
ization (Boyce et al., 2021) with NeRF-based approaches, the
movement could be generated in Blender or any other computer
graphics application, and then exported to a JSON file for ren-
dering.

Different data structures require knowledge of the structure it-
self to read or convert these formats into each other. While
some formats are ASCII-based and straightforward to read,
others have intricate binary layouts with tree and node struc-
tures that need to be unraveled and read semantically correctly.
COLMAP or NeRF-like approaches employ widely used text
or json formats, whereas Unity uses a custom subset of yaml.
FBX (Autodesk, Inc., 2022) implements a completely custom
binary tree structure. Additionally, FBX has very little inform-
ation publicly available (Blender Foundation, 2018), but is very
powerful and can encompass whole 3D scenes from animations
to models and cameras. Getting the correct parameters out of
these data structures is often times not trivial.

Most of these applications and formats also use different co-
ordinate systems, with different default camera orientations.
Rotation can be expressed as matrices, Euler or Tait-Bryan
angles, quaternions, or in yet other ways (Vince, 2011). This
can lead to confusion, as equivalent representations of rota-
tions are often times not obvious or not easily human read-
able, which makes it difficult to verify the correctness of the
respective coordinate system conversion. Therefore, converting
between different coordinate systems and camera orientations is
a vital part of modern photogrammetry research to leverage the
best of every software application. When those parameters are
wrong, poor results in the workflow at a later point are unavoid-
able. Finding the source of the issue can take a long time and
is also difficult to spot, which is why it is very important that
those parameters are conveniently converted without the need
for manual intervention.

Additionally, some intrinsic parameters can be represented in
different ways, but still depict the same entity. For example, the
focal length can be represented in millimeters with respect to
the real-world sensor size, or in pixels with respect to the image
dimensions (AirGon Support, 2018). The principal point can be
represented as absolute pixel coordinates, or as an offset with
respect to the sensor size in inches (Reality Capture Support,
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Figure 1. Potential use cases and applications for the conversion of camera parameters between formats and coordinate systems for
different tasks.

2022). These different representations also behave differently
when modifying the image, for example cropping or scaling.
Manually converting and modifying these parameters adds un-
necessary overhead to the production pipeline.

This paper presents an easy to use python library camorph to
convert different camera parameter conventions into each other.
These can then be used in different subsequent workflows: For
example, cameras can be calibrated in COLMAP, and then
NeRFs can be trained with this calibration. Another workflow
could be creating a model in Reality Capture, refining and tex-
turing in OpenMVS (Cernea, 2020), and then comparing to the
NeRF rendering at the same camera poses. Additionally, cam-
era pose traces can be easily created in Blender, and then ex-
ported to be rendered in another application. Table 2 is a list of
all currently supported camera parameter representations in ca-
morph. Section 3 will give some background information about
camera parameters, while section 4 will cover implementation
details of camorph and results will be presented in section 5.

2. RELATED WORK

Several families of applications can be distinguished, for ex-
ample: 3D computer graphics, photogrammetry, game en-
gines and virtual reality. While 3D computer graphics applic-
ations produce images from virtual objects, photogrammetry
tools generate virtual scenes with 3D models from photographs.
Game engines are specialized in creating interactive real-time
renderings. Similarly, virtual reality applications need to be de-
signed for fast rendering on VR headsets. In some cases, con-
verting from one application to the other is straightforward. For
example, when converting between 3D computer graphics ap-
plications like Blender (Blender Foundation, 2022) and Houd-
ini (Side Effects Software Inc., 2022), both applications can
read several intermediate file formats and convert accordingly.
One of the most widely used format categories in this family
of applications is called scene description formats (Immersive
Digital Experiences Alliance, 2020c). These files usually con-
sist of cameras, geometric objects, shaders, materials, lights,
and more. Some of the most popular formats in this category
are the Autodesk proprietary format FBX(Filmbox) (Autodesk,
Inc., 2016) and the open source format GLTF (graphics lan-
guage transmission format) (The Khronos® 3D Formats Work-
ing Group, 2021). In other application families, converting
from one to another might prove more difficult. In photogram-
metry for example, converting between different applications
like Meshroom (Griwodz et al., 2021) to COLMAP (Schönber-
ger, 2020) and vice versa is not straightforward, because of

how different the camera parameters are represented and stored.
Additionally, converting from one software family to another,
for example from Unity (Unity Technologies, 2022) to MPEG
OMAF (Doré et al., 2018), is quite challenging because of the
different needs of different application areas. Some plugins for
applications exist that try to alleviate the problem, for example
the photogrammetry importer for Blender (Blender Founda-
tion, 2022). As this is a plug-in specifically for Blender and
can only import scenes, this solution is not ideal. The source
code for Local Light Field Fusion (Mildenhall et al., 2019)
also provides a script to convert from the COLMAP format
to the custom poses_bounds.npy. This format is also used
in some NeRF (Mildenhall et al., 2020) variations, in addition
to a custom JSON format which was generated in a Blender
file provided as supplementary material. Moreover, some at-
tempts were made to unify formats and write conversion tools
like Kapture from Naver Labs (NAVER LABS Corp., 2021).
While this can handle formats in the photogrammetry family,
overarching support is missing.

3. BACKGROUND

The most widely used coordinate system is the Cartesian. It
is defined by three orthogonal basis axes usually labeled x,
y, and z. However, the absolute orientation of the system,
what an external viewer would call “up”, “front”, and “right”
is not defined. Every application can define the orientation and
handedness of these axes arbitrarily. This poses a problem with
the consensus between different software packages. What a
user may call “up” in one software package is not “up” in an-
other. Therefore, if no or wrong conversion is done, the user
might design a scene with the right orientation in mind, while a
different software package shows the scene upside down. This
is also a problem in virtual reality for example, as the orient-
ation of the scene has to match with real directions. If there
are several components from different software packages with
different conventions, this has to be corrected manually, which
is irritating at best and unfeasible at worst. Furthermore, some
functionality of software packages depends on the right orienta-
tion of scenes and objects. For example, the Blender navigation
mode is set to turntable as a default (Blender Foundation, 2022).
This means the scene can not be rotated arbitrarily, but works
like a record player, where the user can only rotate the view-
ing camera about two axes (Blender Foundation, 2022). This
way, the user gets a feeling for what “up” and “down” is. This
method of navigation is employed by most applications in the
field of 3D computer graphics. The handedness of the system
can change as well. When not accounting for this factor, scenes
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Tool/Format Name Coordinate System Description

FBX
(Autodesk, Inc., 2022)

u
f

One of the most commonly used node-
based interchange formats between 3D
computer graphics software developed
by Autodesk. Uses a custom binary
node-based format.

COLMAP
(Schönberger et al., 2016) (Schönberger
and Frahm, 2016)

u

f

A 3D reconstruction software developed
by Johannes L. Schönberger with a cus-
tom ASCII based file format for camera
parameters. Uses two files for intrinsic
and extrinsic camera parameters.

Meshroom
(Griwodz et al., 2021)

u f

A 3D reconstruction software developed
by Griwodz et. al. with a custom JSON
based file format for camera parameters.

Reality Capture
(Epic Games, Inc., 2010)

u

f

A 3D reconstruction software developed
by Epic Games, Inc. Based on
XMP (ISO, 2019).

Unity
(Unity Technologies, 2022)

u f

A free to use multi-platform game en-
gine developed by Epic Games, Inc. The
scene files are based on YAML (Ben-
Kiki et al., 2009)

MPEG OMAF
(Hannuksela and Wang, 2021) u

f

The Moving Picture Experts Group
developed the Omnidirectional Me-
dia Format (OMAF) in the standard
MPEG-I to facilitate easy interoperabil-
ity between different devices, compon-
ents and systems. Uses a custom JSON
format.

Local Light Field Fusion
(Mildenhall et al., 2019)

u f

A deep learning solution for render-
ing novel views from input images de-
veloped by Mildenhall et al with a cus-
tom format based on numpy. Uses a
simple numpy format.

NeRF
(Mildenhall et al., 2020)

Neural Radiance Fields(NeRFs) are a
novel way of reconstructing scenes from
input images using neural networks pi-
oneered by Midldenhall et al. Uses a
custom JSON format.

Table 1. Supported formats in camorph. u marks the default cameras up vector, while f marks the front vector.
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and objects may appear mirrored in other software packages.
The next sections will cover extrinsic parameters and their re-
spective conversions, as well as exemplary intrinsic parameters.

3.1 EXTRINSIC CAMERA PARAMETERS

Translations can be represented as a vector addition by the
vector t, which makes them the simplest form of transforma-
tions. Rotations on the other hand are linear transformations,
and can be represented as 3× 3 matrices when projecting from
R3 → R3. There is one matrix for counterclockwise rotation
around each basis axis when using the standard basis (Vince,
2011). Any arbitrary rotation can be expressed through a com-
bination of three rotations around the angles θ, ϕ and ψ (Euler,
1775). Rotations can be combined as they are linear transform-
ations by multiplying the matrices.
As matrix multiplication is generally not commutative, the or-
der of rotational operations matter. There are two conventions
when applying rotational order: proper Euler angles and Tait-
Bryan angles (Markley and Crassidis, 2014). The proper Euler
angle representation shares the first axis of rotation with the
last, while Tait-Bryan angles rotate around distinct axes. Un-
fortunately, the terminology is not always consistent. When re-
ferring to “Euler angles”, most applications and literature have
Tait-Bryon angles in mind. Furthermore, a distinction is made
between intrinsic and extrinsic rotations. Intrinsic rotations
change the orientation of the associated basis vectors, so that
consecutive rotations are in reference to already rotated basis
vectors. Extrinsic rotations on the other hand always rotate
around the fixed basis axes. Rotation in a 3D system can there-
fore be represented either by referencing the composite rota-
tional matrix directly, or by supplying three angles and an order
by which they should be combined. This is also known as yaw,
pitch and roll, where roll can be defined as the rotation about the
z-axis, yaw about the y-axis and pitch about the x-axis. How-
ever, great care should be taken with this representation, as this
definition is not consistent among literature. This means the
axes which are described by yaw, pitch and roll can vary (Vince,
2011). Quaternions are another elegant way to represent rota-
tions in 3D space. Originating from trying to generalize com-
plex numbers to 3D space, the rotational and vectorial proper-
ties became useful in physics and geometry (Vince, 2021). Un-
fortunately, there are currently two conventions for displaying
quaternions: the Hamilton standard as discussed above, and the
JPL standard popularized by the Jet Propulsion Laboratory of
NASA (Solà, 2015).

3.2 CONVERSION OF EXTRINSIC CAMERA PARA-
METERS

A linear transformation can be written as a matrix where the
rows are the images of the standard basis vectors. Therefore,
to convert from one coordinate system into another, this trans-
formation can be written as a matrix of the images of the basis
vectors in the new coordinate system:

Mb =


xTi

yTi

zTi

 (1)

where xi, yi and zi are the respective image vectors of the x, y
and z basis vectors in the source coordinate system.

The determinant for an orthogonal matrix is always 1 or -
1. When the determinant is -1, the matrix represents a com-
bined rotation and reflection (Strampp and Janssen, 2020). With
Cartesian coordinates, the only instance where the determinant
of Mb is negative is when converting from a right-handed co-
ordinate system into a left-handed one or vice versa. To split
up this conversion, simply multiply Mb with a reflection matrix
along an arbitrary axis.

With Mb, the camera translation t in a coordinate system with
the basis vectors x, y and z can be converted to an equivalent
translation t′ in another coordinate system with basis vectors
xi, yi and zi:

t′ =Mb · t (2)

When converting a rotation R however, two extra factors need
to be considered:

• Difference in specifying the default orientation of cameras

• R is a linear transformation in the source coordinate sys-
tem convention, unlike t which is an offset vector.

The first problem can be solved by finding the rotational differ-
enceMd between the two standard camera orientationsM1,M2

:
Md =M1 ·MT

2 (3)

After this step, the source rotation R needs to be applied. As a
final step, this orientation is converted to the target coordinate
system by applying Mb:

Mb ·R ·Md (4)

This results in these two final core equations for the converted
translation t′ and rotation R′:

t′ =Mb · t (5)

R′ =Mb ·R ·Md (6)

3.3 INTRINSIC CAMERA PARAMETERS

Cameras are used to project the 3D scene onto a 2D image.
The parameters used to define this projection are called intrinsic
parameters (Yan et al., 2016). The simplest form is orthographic
projection. Objects are projected in parallel lines onto a projec-
tion surface. Sizes and angles of objects remain independent of
the distance to the camera (Nischwitz et al., 2019).

The most widely used standard camera model with perspective
projection is the pinhole camera model. The pinhole is then
called center of projection (Tomasi, 2015). The focal length is
the distance between the image plane and the center of projec-
tion. This is commonly expressed as real-world measurements
(mm) or in pixels relative to the dimensions of the output im-
age. The image sensor is a device which collects and samples
light and converts it into an electrical signal. The sensor is an
rectangular grid of photo-sensitive elements, the size of which
can be given in real-world measurements (mm) or as the im-
age resolution in pixels. The most commonly used sensor size
in virtual cameras is 36 mm × 24 mm, which originates in the
135 film photography defined in the ISO standard 1007 (ISO,
2000). Additionally, focal length and sensor size define a field
of view. The point where the optical axis pierces the image
plane is called the principal point. For a typical virtual camera,
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this is in the middle of the image plane. But when using tilt
shift where the image plane is moved and rotated in respect to
the camera lens, the principal point can vary (Hanning, 2011).
The principal point can be expressed in relative or absolute val-
ues; either in real-world measurements or pixels.

4. CAMORPH

Camorph is a toolkit to convert different camera parameter rep-
resentations into each other implemented as a python library,
and also supports usage as a command line interface. The core
features of camorph include:

• Fast and easy conversion of different camera parameter
conventions

• Extensibility through a plug-in mechanism

• Handling of crucial properties for different formats

• Automatic computation of different representations of in-
trinsic camera parameters

• Visualization of camera poses

• Correct computation of intrinsic parameters given a scale
factor and cropping coordinates

4.1 PLUG-IN MECHANISM

The system provides an external plug-in mechanism to easily
develop additional support for other file formats. The abstract
class FileHandler defines all necessary methods and proper-
ties used by camorph. When implementing a plug-in for a new
file format, a child class of FileHandler has to be created in a
subpackage of the package ext. Other utility classes can also be
placed inside of the subpackage. Camorph iterates the packages
and loads all instances discovered this way at initialization.

4.2 CRUCIAL PROPERTIES

Some formats need properties other formats do not provide.
For example, all photogrammetry formats need source im-
ages, while 3D computer graphics formats typically do
not support this property because computer graphics typic-
ally produces images from virtual scenes while photogram-
metry produces a virtual scene from photographs. To al-
leviate this problem, each plug-in can define a variable
crucial_properties: list[(str, type)] where crucial
properties can be supplied as a tuple of the name and the type.
When trying to write to an output format, camorph will check
if the supplied properties are present for each camera. If not,
a template configuration file config.json will be written to the
output path and an exception is raised. The config.json has the
following structure:

• global holds global information which is applied to all
cameras.
All properties declared in this scope are set for all cam-
eras. For example, "global_template":"Value" will
add a property global_template with the value Value

to all cameras when processed.
If a property has the suffix _path, it is interpreted differ-
ently: camorph will expect an object with a property path

and an optional property filter as its value. path is the

path to a folder as a string, and filter is an optional regu-
lar expression to filter the files in that folder. For example,
source_image_path will look for files in the path prop-
erty, filter them according to filter, and will then try to
match the filenames with the camera IDs. If that is not
possible, camorph will assume the order of the files in the
directory as os.listdir().sort() provides is the same
order as the cameras in camorph. Then, each camera will
be assigned a file path as a string according to the ID or
order.

• values holds local information which is applied to each
camera individually. The property id is a unique identifier,
which can be used to identify the cameras when supplying
crucial properties. Local properties will override global
properties.

camorph will look for a file named config.json in the output
folder and use this as the configuration file if available.

4.3 AUTOMATIC COMPUTATION OF CAMERA
PARAMETERS

Some intrinsic camera parameters have equivalent representa-
tions. For example, the focal length can be expressed in mil-
limeters as well as in pixels, the focal length can be expressed
as a field of view with a corresponding sensor size, the lens
shift can be represented as relative offset to the center of the
image plane or as absolute pixel coordinates, and many more.
Because of this, some camera formats may have all the inform-
ation necessary to compute certain parameters. Doing this by
hand requires the developer of a FileHandler to be aware of
the issue, and additionally know all conversion mechanisms.
To automate this process, camorph will automatically check if
enough information is present, and then calculate missing para-
meters if the information suffices.
Similarly, rotation can be expressed in various ways. When
reading any supported format, camorph converts the given ro-
tation to quaternions. The resulting rotation and the transla-
tion are then converted to camorphs internal coordinate system,
which is z up, y right and x front with a default camera up
vector facing y and the default front vector facing −z. When
writing to any format, the rotation and translation are converted
to the respective target coordinate system as well as to desired
representation of extrinsic parameters, for example Euler angles
or matrices for rotation.

4.4 SCALING AND CROPPING

When scaling and cropping images, the intrinsic parameters of
cameras can change. For example, FBX assumes a sensor size
of 36 mm × 24 mm by default, regardless of the image di-
mension. This means that the given focal length in real-world
measurements changes when cropping images, as the assumed
sensor size remains the same. Similarly, the location of the prin-
cipal point changes when not retaining the center of the image.
These scaling and cropping parameters can be supplied to ca-
morph, and the intrinsic parameters of the cameras are scaled
accordingly.

4.5 VISUALIZATION

The system provides visualization for orientation and location
of cameras in a list. This is done with the python package mat-
plotlib (Hunter, 2007), where a red arrow represents the view-
ing direction(front vector), and a green arrow represents the up
vector of a respective camera.
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from camorph import camorph

cams = camorph . r e a d c a m e r a s ( ’COLMAP’ , r ’\ p a t h \ t o \COLMAP’ )
camorph . v i s u a l i z e ( cams )
camorph . w r i t e c a m e r a s ( ’ fbx ’ , r ’\ p a t h \ t o \ fbx\ f i l e . fbx ’ , cams )
camorph . w r i t e c a m e r a s ( ’ u n i t y ’ , r ’\ p a t h \ t o \ u n i t y \ f i l e . u n i t y ’ , cams )

Listing 1. Camorph example conversion from COLMAP to FBX and Unity

Format Avg. memory requirement Avg. time to write Avg. time to read

FBX 1415 bytes 1.338 ms 1.256 ms

COLMAP txt
extrinsic 258 bytes

0.997 ms 1.187 ms
intrinsic 62 bytes

COLMAP bin
extrinsic 202 bytes

1.104 ms 1.089 ms
intrinsic 48 bytes

Meshroom SfM 1722 bytes 0.816 ms 1.012 ms

Reality Capture XMP 1273 bytes 6.293 ms 2.534 ms

Unity scene 2181 bytes 8.359 ms 13.481 ms

MPEG OMAF JSON 1007 bytes 0.866 ms 0.842 ms

LLFF 138 bytes 0.826 ms 0.842 ms

NeRF JSON 1150 bytes 0.895 ms 2.379 ms

Table 2. Memory requirement and time complexity of different formats. The values are given for one camera.

5. RESULTS

The performance regarding space and time complexity were
analyzed using a workstation with an Intel Xeon E5-2640 v4
CPU with 10 cores at 2.4 GHz. Listing 1 gives an example
of how camorph can be used to convert cameras saved as
COLMAP files to an FBX or an Unity file. Table 3 shows exem-
plary virtual cameras in camorphs visualization and the same
set of cameras in COLMAPS graphical user interface.

5.1 TIME COMPLEXITY

Formats were read and written at an increment of 25 cameras
per step up to 300 cameras. To obtain stable results, the conver-
sion was done 100 times and the results were averaged. Table 2
shows that all formats except Unity and Reality Captures XMP
perform similarly. Reality Captures XMP has the drawback of
having one file for each camera, which creates a lot of read and
write overhead. The poor performance of Unity however, is due
to the performance of PyYaml (Simonov, 2016), which is used
to parse and create YAML files. As most formats do not store the
same amount of intrinsic parameters, other comparisons are dif-
ficult to draw. For example, reading FBX files takes longer than
reading simple formats like LLFF, but this is also due to the
fact that FBX stores more parameters per camera and is more
flexible in general.

5.2 MEMORY REQUIREMENTS

Fig. 2 shows the average memory required to store a camera in
different formats. As camera properties can vary (for example,
different distortion models have different amount of paramet-
ers), cameras in various formats were saved and then averaged.

Similarly to the time complexity, more storage also means more
parameters. Formats like FBX do have more overhead than the
simple COLMAP format, but also provide greater flexibility.

6. CONCLUSION

The in this paper presented python library camorph provides an
easy way with minimal external dependencies to convert differ-
ent representations of camera formats into each other. Addition-
ally, cameras can be visualized in the camorph coordinate sys-
tem. If a multi-software processing (photogrammetry or others)
pipeline is used, camorph can easily be integrated as a python
library to automate conversions. Furthermore, it can be used
to verify camera parameters by visualization or by converting
them into another easily verifiable format like FBX.

As camorph is designed to be easily extendable, more
formats can be added in the future. Some interesting
formats would be the universal scene description (USD)
format by Pixar (Sony Pictures Imageworks, 2021), the alem-
bic format (Pixar Animation Studios, 2021) and the Immersive
Technologies Media Format (ITMF) (Immersive Digital Exper-
iences Alliance, 2020a)(Immersive Digital Experiences Alli-
ance, 2020b)(Immersive Digital Experiences Alliance, 2021).
Additionally, support for formats of Unreal Engine (Epic
Games, Inc., 2022) as another game engine format would be
reasonable.

A graphical user interface may also be useful for camorph to in-
crease interactivity. Some features could include selection and
manipulation of specific cameras, or saving and converting just
a subset of cameras.
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Table 3. Examples of camera parameter representations converted with camorph. On the left side is camorphs visualization, on the
right side the same cameras in the COLMAP coordinate system

Creation of cameras from animation curves could also be im-
plemented. This way, camera arrays could be represented by a
single camera and a change of position over time.
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