IMAGE-BASED STATE MODELING OF THE LAND MOBILE SATELLITE CHANNEL
FOR MULTI-SATELLITE RECEPTION

Marie Rieche1, Daniel Arndt1, Alexander Ihlow1, Markus Landmann2, and Giovanni Del Galdo1

1Ilmenau University of Technology, Digital Broadcasting Research Lab, Helmholzplatz 2, 98693 Ilmenau, Germany, name.lastname@tu-ilmenau.de

2Fraunhofer Institute for Integrated Circuits IIS, Am Wolfsmantel 33, 91058 Erlangen, Germany, markus.landmann@iis.fraunhofer.de

ABSTRACT

This paper investigates the image-based characterization of the land mobile satellite (LMS) channel. For a comprehensive multi-satellite model, a traditional measurement-based approach is not feasible due to the lack of available satellites at all possible orbital positions and the drawbacks of the measurement system when a high gain tracking antenna is involved (e.g. Ka/Ku band). To overcome these challenges, we propose to derive the LMS channel state-model from an evaluation of hemispheric images of the environment. With geometric considerations we can predict the position of an arbitrary satellite within the image. Based on this information the reception state of the LMS channel can be extracted. We determine the accuracy of our method by comparing it with results from RF (Radio Frequency) measurements. This image-based approach establishes the basis of propagation modeling even for multi-/single-satellite systems not yet in orbit.

Key words: propagation; channel modeling; land mobile satellite channel; measurements; image processing.

1. INTRODUCTION

Direct-to-home stationary satellite broadcasting as well as bi-directional satellite communication via very small aperture terminals (VSAT) are nowadays of everyday use. Satellite broadcasting systems employing mobile receivers are also increasingly popular. An example is the Satellite Digital Audio Radio Service (SDARS) in the U.S., operated by Sirius XM Radio [1, 2]. Establishing such systems is of high economic risk and needs thorough network planning to meet the customers quality of service (QoS) requirements. Therefore, an adequate description of the underlying radio propagation channel is essential.

Since the 1980s, statistical models for the land mobile satellite (LMS) link are under consideration and have been refined by several measurement campaigns in various environments [3, 4, 5, 6]. These models are based on a characterization of the signal power variations, as depicted in Figure 1. The characterization of the LMS channel on the basis of a sequence of reception states is widely accepted. In the literature, several statistical LMS models incorporating three states (Line-of-Sight (LoS), light shadowing, blockage) [7]. Available 2-state-models ([8, 9]) are describing the channel as either good (LoS/ light shadowing) or bad (NLoS/ heavy shadowing).

To derive those states from signal measurements faces two main issues: First, it requires a high transmit power satellite already in orbit. Alternatively, the satellite may have to be emulated by a helicopter equipped with a transmitter.

Second, these measurements represent only one possible realization of the satellite position in azimuth and elevation. The evaluation of modern transmission modes incorporating multi-satellite diversity (angle diversity)
needs several satellites available to be measured simultaneously. Recently, such measurements have been undertaken using the SDARS system in the U.S. [10].

A promising alternative of characterizing the LMS channel is an optical analysis of the environment. This method known as *photogrammetric satellite service prediction (PSSP)* and was introduced by Akturan et al. in 1994 [11]. The environment is photographed by a camera, equipped with a fisheye lens, covering the upper hemisphere. Subsequently, the channel states are derived by image processing and pattern recognition techniques [12].

The optical approach is particularly promising at higher frequency bands such as Ku or Ka band. In fact, here mostly high gain antennas are applied and the impact of multipath propagation can be neglected. Consequently the information about LoS (Line-of-Sight) or NLoS (Non-Line-of-Sight) condition is sufficient for the modeling of the different channel states.

In combination with the models for atmospheric effects at this frequency bands such as ITU-R P.618-1 (see [13]) a realistic LMS channel model can be derived. Measuring the LMS channel is quite challenging as a perfect tracking of the high gain antenna has to be assumed.

In [14], the satellites visibility was compared with the measured power levels, already.

The present contribution is about the extraction of the satellite reception states from images. The evaluation of this approach is performed from the statistical channel modeling point of view. To verify the accuracy of our results, we compare them with results based on measured power levels, as a reference. This paper is organized as follows: Section 2 describes the measurement validation campaign and data analysis. Subsequently, in Section 3 the statistics of the measured RF signal and the optical channel conditions are compared. Finally, Section 4 concludes the paper.

2. MEASUREMENTS AND DATA ANALYSIS

2.1. Data Acquisition

Extensive measurements in the S-band were conducted in the context of the project Mobile satellite channel with Angle Diversity (MiLADY) [10].

In Figure 2, the traveled distance of 3700 km along the east coast of the U.S. is shown. The measurement equipment synchronously recorded the received power levels of Sirius XM Radio, operating in the S-band at 2.3 GHz. This system consists of two geostationary (GEO) satellites and three highly elliptical orbit (HEO) satellites, where two of the three HEOs were always visible at the same time. The sampling rate of the power levels was 2.1 kHz. The exact measuring time and vehicle position was logged via GPS. Moreover, two cameras were mounted on the van to document the environmental conditions. The upper hemisphere was captured by JPEG-compressed color images with a frame rate of about 5 frames per second and a resolution of 1024 × 768 pixels. Some regions near the horizon were not covered by the camera.

In [14], the satellites visibility was compared with the measured power levels, already.

The present contribution is about the extraction of the satellite reception states from images. The evaluation of this approach is performed from the statistical channel modeling point of view. To verify the accuracy of our results, we compare them with results based on measured power levels, as a reference. This paper is organized as follows: Section 2 describes the measurement validation campaign and data analysis. Subsequently, in Section 3 the statistics of the measured RF signal and the optical channel conditions are compared. Finally, Section 4 concludes the paper.

2.2. Image Processing and Analysis

In this contribution we want to derive the LMS channel reception state from images of the environment. First of all, the hemispheric images were classified into *Sky* and *Object*. A robust image analysis technique was applied using a color clustering approach in the RGB color space. A possible implementation that models the color distributions of the classes as multivariate Gaussians and estimates the class parameters via the Expectation Maximization (EM) algorithm, is described in [15]. A result of this binary classification is depicted in Figure 3. The sun drives the camera sensor into saturation and marks a black dot in the images.

In a second step, the conversion from the classified fisheye images to rectangular images in landscape panoramic form was performed. The transformation is processed such that the output panoramic image is represented of a polar coordinate system, as you can see in Figure 4. Thus, objects appear less distorted.

Additionally, the images are shifted based on the GPS heading information of the car, thus 0° corresponds to the north direction.

Consequently, it is possible to choose any position in elevation and azimuth for arbitrary satellite constellations. By fusing the time- and location-information we determine the satellite positions in the binary images. The
3. RESULTS

A preliminary comparison between RF and image state sequences in this paper is performed for one hour of measurements in the area of Portland (urban/suburban). In Figure 6 the actual RF signal levels (blue solid line) and the corresponding binary image values (red circles) are compared as time series. Each satellite signal (Sirius 1, Sirius 2, XM East and XM West) is plotted in a separate diagram, over a time period of approximately 2 min.

From the slow fading point of view, the binary values and the RF signal level are clearly in good agreement. Nevertheless, there are some parts which do not fit, such as in the first diagram from 15:01:07 till 15:01:15. Indeed, in this case the satellite position was at the edge of a building, which can cause erroneous identifications. Other possible reasons are e.g. windows in which the sky is mirrored and consequently they are incorrectly detected as sky.

Table 1 shows the correlation factor \(r(x, y) \) between the state sequence from RF \(x \) and from images \(y \), both of the length \(N \). It is defined as

\[
r(x, y) = \frac{1}{N} \sum_{i=1}^{N} 1 \quad \text{for} \quad i = 1, \ldots, N. \quad (1)
\]

\(x \) and \(y \) are \(\in \{0, 1\} \), where “0” represents the bad state and “1” the good.

For all satellites a high (0.83 to 0.95) correlation is obtained. There is a clear tendency of an increasing correlation \(r(x, y) \) associated with an increasing mean elevation angle \(\phi \).

At high elevation angles (Sirius 1, Sirius 2) a clear LoS state is more probable. This leads to a more successful state identification, as shown by the higher correlation coefficient (0.91 and 0.95).

Table 1. Mean elevation angle \(\phi \) for the different satellites.

<table>
<thead>
<tr>
<th>Satellite</th>
<th>(\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sirius 1</td>
<td>65°</td>
</tr>
<tr>
<td>Sirius 2</td>
<td>68°</td>
</tr>
<tr>
<td>XM East</td>
<td>38°</td>
</tr>
<tr>
<td>XM West</td>
<td>23°</td>
</tr>
</tbody>
</table>

Table 1. Mean elevation angle \(\phi \) for the different satellites. For each, the correlation factor \(r(x, y) \) between the state sequence of RF \(x \) and image data \(y \) is obtained.

<table>
<thead>
<tr>
<th>Satellite</th>
<th>(\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sirius 1</td>
<td>65°</td>
</tr>
<tr>
<td>Sirius 2</td>
<td>68°</td>
</tr>
<tr>
<td>XM East</td>
<td>38°</td>
</tr>
<tr>
<td>XM West</td>
<td>23°</td>
</tr>
</tbody>
</table>

\[r(x, y) = 0.91 \quad 0.95 \quad 0.84 \quad 0.83 \]
For lower elevations, as (XM East, XM West) at 38°, false detected windows and building edges are a problems to cope with (referring to Section 2.2).

From the LMS channel modeling point of view, several statistical parameters need to be determined. Therefore, the evaluation is carried out in terms of state probabilities and state duration statistics.

In Figure 5 are plotted the calculated good state probability for Sirius 1, Sirius 2, XM East and XM West, comparing the results of the RF and image based analysis.

Since only two states are assumed, the bad state probability is calculated using $P_{\text{bad}} = 1 - P_{\text{good}}$.

Obviously, the good state probability is greater for HEO satellites (Sirius 1, Sirius 2), because of the higher elevation angles (see Table 1). Their probabilities are between 0.94 and 0.87, thereby RF and image data correspond very well.

For lower elevations (XM East, XM West) the state probability is 0.77 and 0.57. The probabilities for RF and image fit very well, only with slight deviations between 0.03 and 0.07.

Generally, the image-based good state probability is lower due to the fact that the binary image only distinguishes between clear LoS and everything which is left over. In comparison, the thresholding of the RF signal level at 5 dB below LoS corresponds more to the meaning LoS/ light shadowing and NLoS/ heavy shadowing.

The bad state duration statistics show a higher deviation up to 2 sec (at $P = 0.4$), however the tendency of the curves is similar.

4. CONCLUSIONS

In this paper, we jointly analyzed the measured RF signal level of various satellites with the binary value corresponding to the satellites, obtained from unwrapped panoramic images (originally hemispheric images). Furthermore, we determined reception states to characterize the propagation channel. The RF and images based states present a high correlation. As a further evaluation criterion, the RF and image state probabilities and the state duration statistics are compared.

The statistical parameters are fairly matching, especially for satellite positions with high elevation angle. It is found that slow-fading effects (states) due to signal blockages can be reliably detected by the optical method.

Fast signal variations, statistical models (cf. Loo’s distribution [3]) would offer a complement. From this we can conclude that the image based state reception in combination with e.g. a Loo parameter estimation is a reliable multi-satellite modeling method. Nevertheless, some improvement can be carried out by coping with false detected windows, edges of buildings and overexposure.

In particular, the presented approach works even more correctly for higher frequency bands as Ku and Ka, where shadowing and obstruction play a decisive role. Due to the high directivity of the antennas employed, the channel is similar to an optical channel. For the future a hybrid model, including also the atmospheric effects, could be possible, as their effects are uncorrelated. In combination with the models for atmospheric effects at this frequency bands, such as ITU-R P.618-1 ([13]), a realistic LMS channel model could be derived.

ACKNOWLEDGMENT

The measurements were carried out in the context of the project MiLADY (Mobile satellite channel with Angle DiversiY), funded by the European Space Agency (ESA) under contract number C21150.

REFERENCES

Figure 6. The measured RF signal level (blue) and the corresponding binary values (red circles) are plotted for each of the four satellites (Sirius 1, Sirius 2, XM East and XM West) over a certain time period (≈ 2 min). The horizontal line shows the threshold for state identification, which is 5dB below the LoS.
Figure 7. State duration statistics for good (blue) and bad (red) state are presented for each satellite (Sirius 1, Sirius 2, XM East and XM West). Additionally, they are analyzed for RF based states (dashed lines) and image (IM) based states (solid lines).