xAI – Explainable AI in Digital Pathology
![BMBF_CMYK_Gef_M [Konvertiert]](/en/ff/sse/health/medical-image-analysis/mikroskopie/micaia/digitale-pathologie-KI/jcr:content/contentPar/sectioncomponent_134/sectionParsys/textwithinlinedimage/imageComponent1/image.img.jpg/1613473108332/BMBF-gefoerdert-2017-en.jpg)
Goal: turn AI algorithms used in Digital Pathology from a black box into a glass box
Partners: University of Bamberg (Cognitive Systems, Prof. Dr. Ute Schmid), Fraunhofer HHI
Current Status:
- Research and evaluation of technologies to make AI algorithms more explainable
Solution:
- Display results from neural networks in an easily comprehensible and transparent manner
- Take into account uncertainties from the annotated training data as well from the model itself
Funded by Federal Ministry of Education and Research (BMBF)
Transparent Medical Expert Companion (TraMeExCo)
---------------------------------------------------------
Literature:
Schmid, Wittenberg (2019) TraMeExCo - Medical Expert Companion (Vortrag). All-Hands-Meeting (5. Juni 2019, Dortmund), Förderschwerpunkt Maschinelles Lernen des BMBF. -- [Slides], [Poster]
Rieger, Finzel, Seuß, Wittenberg, Schmid (2019) Make Pain Estimation Transparent: A Roadmap to Fuse Bayesian Deep Learning and Inductive Logic Programming (Poster). 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC, 23.-27. Juli 2019, Berlin)
Bruns, Volker, Geppert, Carol (2019), Einsatz von Künstlicher Intelligenz in der digitalen Pathologie - Auf dem Sprung in die Routine?, Trillium Diagnostik 2/2019, https://www.trillium.de/zeitschriften/trillium-diagnostik/ausgaben-2019/td-heft-22019/pathologie/einsatz-von-kuenstlicher-intelligenz-in-der-digitalen-pathologie.html
Poster presentation at Global Engage blog: Tumor budding in brightfield immunostained colon sections